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SUMMARY 

 

 Current orthopedic implant technologies used suffer from slow rates of 

osseointegration, short lifetime, and lack of mechanical integrity as a result of poorly 

controlled cell-surface interactions. Recent biologically-inspired surface strategies 

(biomimetic) have focused on mimicking the biofunctionality of the extracellular matrix 

(ECM) by using short, adhesive oligopeptides, such as arginine-glycine-aspartic acid 

(RGD) present in numerous ECM components.  However, these strategies have yielded 

mixed results in vivo and marginal bone healing responses.  The central goal of this 

dissertation project was to engineer bioactive surfaces that specifically target integrin 

receptors important for osteogenic functions in order to improve bone tissue repair.  

 In order to create integrin-specific interfaces, integrin-specific ligands 

reconstituting the fibronectin (FN) secondary/tertiary structure were first engineered and 

functionalized on material surfaces using several robust presentation schemes. We 

demonstrated that FN-mimetic-functionalized surfaces that directed α5β1 binding 

enhanced osteoblast and stromal cell integrin binding and adhesion, osteogenic signaling, 

and osteoblastic differentiation compared to various other RGD-based ligand-

functionalized surfaces. Next, we investigated the effect of  integrin-specific biointerfaces 

to modulate  bone healing in a rat tibia implant bone model. We demonstrated, using a 

robust polymer brush system, that bioactive coatings on titanium implants that conferred 

high α5β1 integrin specificity in vitro enhanced bone formation and implant integration in 

vivo. Moreover, we  showed that integrin specificity can be engineered using  different 

immobilization schemes, including clinically-relevant ligand dip-coating,  and promote 
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the same robust in vivo effect. Furthermore, we investigate the synergistic roles of 

integrin specificity and ligand clustering on cell response by engineering biointerfaces 

presenting trimeric and pentameric “heads” of FNIII7-10 with nanoscale spacing. Integrin-

specific ligand clustering supported α5β1-specific binding and cell adhesion and enhanced 

implant osseointegration in vivo compared to monovalent  FNIII7-10 or non-functionalized 

biointerfaces.  

 In summary, the FN-mimetic integrin-specific biointerfaces engineered in this 

thesis provide a clinically-relevant material surface strategy to modulate tissue healing 

responses.  In addition, these results contribute to our greater understanding of how two 

specific material design parameters, integrin binding specificity and clustered ligand 

presentation, contribute individually and synergistically toward directing cell and tissue 

function.  
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CHAPTER 1 

INTRODUCTION 

 

Orthopedic disorders, including total joint arthroplasties, constitute a leading cause 

of personal and occupational disability in the U.S., incurring tremendous health care related 

costs. For instance, over 750,000 total joint replacements were performed in 2002 at a cost 

of over 15 billion dollars; by 2040, due to an aging populace, it is projected that over 

500,000 total hip replacements alone will be performed [1]. The lifetime of current joint 

replacements depends on sufficient integration into the surrounding bone, termed 

osseointegraton. Insufficient integration often leads to aseptic loosening, further resulting in 

patient pain, loss of joint function, and, ultimately, revision surgery. Unfortunately, current 

implants do not typically last the lifetime of the patient. For example, approximately 50% of 

total hip replacements will fail in the first 20 years after implantation [1]. Each revision 

severely diminishes the lifetime of the subsequent implant. Furthermore, the need for 

orthopedic implants has steadily increased among young people, making it imperative that 

orthopedic implant lifetime be increased to reduce the subsequent number of revisions for 

each patient [2]. Importantly, hip and dental implants require significant time, at least 

several weeks, for full recovery and bone repair [2]. 

 Recent efforts have converged on developing implant surface technologies that 

promote bone osseointegration as early as possible to reduce recovery time and eventually 

improve implant lifetime and patient quality of life. Current orthopedic implant technologies 

used clinically have mainly centered on bone-bonding bioactive ceramic coatings to promote 

osseointegration with surrounding bone and rough/porous coatings that stimulate bone 

ingrowth [3]. While moderately successful, these approaches suffer from slow rates of 

osseointegration, short lifetime, and lack of mechanical integrity as a result of poorly 

controlled cell-surface interactions [4]. Recent biologically-inspired surface strategies 
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(biomimetic) have focused on mimicking the biofunctionality of the extracellular matrix 

(ECM) in order to control cell function, wound healing, and tissue remodeling – believed to 

be critical issues to control for successful implant-tissue integration. In particular, many 

approaches have concentrated on functionalizing implant surfaces with short, adhesive 

oligopeptides, such as arginine-glycine-aspartic acid (RGD) present in numerous ECM 

components, in order to control bone cell-material interactions [5-9]. However, these 

strategies have yielded mixed results in vivo and sub-optimal tissue healing responses, 

including bone formation and implant fixation [10-12]. The lack of consistent positive 

results may be attributed partly due to unregulated protein adsorption, leading to non-

specific surface effects. Moreover, these surface strategies are restricted by the low activity 

of oligopeptides compared to the native ligand, largely due to the absence of complementary 

or modulatory domains involved in cell adhesion [13-15]. Controlling at a molecular level 

the adhesion of local cells which interact with the implant in situ may be a crucial step in 

designing biologically active osseous implants.   

Cell adhesion to extracellular matrices is primarily mediated by integrin receptors, 

which anchor cells and trigger signals that regulate survival, cell cycle progression, and 

differentiation in a variety of cellular systems [16]. Many specific integrin combinations are 

heavily implicated in tissue-specific signaling and cell function.  In particular, the α5β1 

subunit combination ha been associated with robust bone-specific (osteogenic) signaling 

and, furthermore, is critical for bone formation in embryonic and adult cell systems. 

Importantly, clustering of these activated integrins into supramolecular complexes (focal 

adhesions) provides the physical framework that regulates integrin function and signaling. 

Furthermore, recent evidence suggests that integrin binding specificity also regulates the 

proliferation and differentiation of osteoblasts and myoblasts [17,18]. Therefore, the 

engineering of biomimetic surfaces that promote integrin clustering and/or specificity may 

be a promising biomaterial surface strategy to  improve implant osseointegration.  
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  This work aims to address implant osseointegration limitations by examining the 

effect of  integrin specificity as a surface strategy for engineering orthopedic implants. The 

overall objective of this research project was to engineer bioactive surfaces that specifically 

target integrin receptors important for osteogenic functions in order to improve bone tissue 

repair. Our central hypothesis was that the controlled presentation of integrin-specific 

ligands reconstituting the fibronectin (FN) secondary/tertiary structure will direct cell 

adhesion and osteogenic signaling and protein production, and thereby enhance implant-

bone integration. Moreover, we further hypothesized that controlled surface coatings of 

nanoscale multimeric integrin-specific ligands will modulate integrin-related binding and 

adhesion, and, furthermore, improve implant osseointegration compared to non-clustered 

ligands.  The overall objective was tested with the following specific aims: 

 

1. Engineer biomaterial surfaces presenting integrin-specific FN ligands and evaluate 

the in vitro effect on integrin binding, cell signaling, and differentiation. 

Our working hypothesis was that a FN-mimetic protein fragment presenting the 

central binding domain and synergy adhesive motif in the correct structural context will  

support α5β1-mediated cell adhesion and signaling, and osteoblastic differentiation over non-

α5β1 specific substrates. We tested this hypothesis by engineering a recombinant fragment of 

FN (FNIII7-10) which incorporates both the cell adhesive motif RGD as well as its synergy 

sequence PHSRN in the native FN secondary structure. FNIII7-10 and other integrin ligands, 

including plasma FN and RGD-based oligopeptides, were functionalized on substrates using 

various in vitro ligand presentation schemes, including self-assembled monolayers and 

robust polymer brushes. The ability of FNIII7-10-functionalized surfaces to direct osteoblast 

and stromal cell integrin binding and adhesion, osteogenic signaling, and osteoblastic 

differentiation was compared to various other RGD-based ligand-functionalized surfaces.  
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2. Evaluate the in vivo effect of integrin-specific biointerfaces on implant 

osseointegration and bone formation. 

  Our working hypothesis was that bioactive coatings of integrin-specific ligands 

would modulate bone repair and the extent of implant osseointegration in vivo.  We tested 

this hypothesis by coating titanium orthopedic implants with ligands of varying integrin 

specificity, including FNIII7-10, pFN, and RGD, via polymer brushes or  simple dip-coating. 

These implants were press fit into a rat tibial cortical bone model and osseointegration was 

assessed at 4 weeks post-implantation via bone-implant histomorphometry and mechanical 

pull-out testing.  

 

3. Investigate the effect of integrin-specific ligand multivalency on in vitro cell adhesive 

parameters and in vivo implant osseointegration.   

The working hypothesis was that multivalent proteins presenting multiple FNIII7-10 

ligands will support α5β1-specific binding and that increasing ligand valency will enhance 

cell adhesive functions and implant osseointegration compared to monovalent  FNIII7-10 or 

non-functionalized biointerfaces. We tested this hypothesis by purifying multimeric 

constructs presenting 1,3, or 5 FNIII7-10 heads and assessing the effect of ligand valency on 

integrin binding, cell adhesion strength, and osteogenic differentiation. These multimeric 

ligands were then used as implant coatings in a rat tibial cortical bone model and implant 

osseointegration evaluated via mechanical testing and histomorphometrical analysis.  

 

This research is significant because it seeks to elucidate both the individual and 

synergistic roles of integrin specificity and ligand clustering as material surface design 

parameters for modulating tissue-specific cell function and promoting an effective tissue 

healing response.  Understanding how each of these design parameters affects cell and tissue 

response will contribute significantly to the rational engineering of bioactive materials. The 

biomimetic surface strategy of using bioactive ligands to confer integrin binding specificity 
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is validated using several robust ligand presentation approaches, and the subsequent effect 

on modulating in vitro osteogenic function and in vivo implant integration is evaluated. 

Next, taking this technology a step further, this work evaluates the feasibility of utilizing 

relative spatial constraints for ligand presentation to augment integrin binding, adhesion, and 

implant integration.  

This work is fundamentally different from current biomimetic approaches in that it 

concentrates on engineering integrin specificity as a rational micro-scale surface material 

strategy to modulate cell function and tissue repair.  This research also explores the efficacy 

of the nano-scale strategy of ligand clustering in modulating these same functional 

outcomes. These studies provide new insights into the biological role of these micro-scale 

and nano-scale adhesion parameters and receptor-ligand interactions in controlling cell 

function and orthopedic tissue repair in a biomaterial context.  Due to the global role of 

integrin binding in other tissue and organ systems, the insights gained from this project 

contribute significantly to our general understanding of cell adhesion mechanisms and the 

regulation of cell-material interactions.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 
 
 
 

Extracellular Matrix-derived Ligands for Selective Integrin Binding 
 

Extracellular Matrix (ECM) : Composition and Role 

The interactions of cells with their extracellular matrix (ECM) are critically 

involved in mediating the development, organization, and repair of numerous tissues.  At  

the cell level, cell-matrix interactions can directly modulate cell morphology, survival, 

proliferation, and differentiation in multiple cell systems [19,20].  

The ECM is primarily composed of a complex meshwork of fibrous proteins 

(fiber-forming elements) surrounded by space-filling molecules such as 

glycosaminoglycans (GAGs) - as well as mineral deposits in tissues such as bone. Many 

of these components are secreted by resident cells and primarily provide support and 

anchorage, but also serve important roles as tissue boundaries and in the modulation of 

intra- and inter-cellular communication [21]. Moreover, the ECM is not only made, but 

also organized and remodeled, by the cells within it. Formation and remodeling of this 

ECM network is vital for a number of tissue responses such as cell migration during 

tissue formation and repair, growth, wound healing, and fibrotic responses [22]. Many of 

the fibrous proteins that make up the ECM, including collagen, fibronectin, elastin, and  

 

*Modified from 
T.A. Petrie, A.J. García. Extracellular Matrix-derived Ligands for Selective Integrin Binding to 
Control Cell Function, Invited book chapter of textbook entitled “Biological Interactions on 
Materials Surfaces: Understanding and Controlling Protein, Cell and Tissue Responses”, Editors: 
R Bizios, D Puleo; Springer Publishing, Published 2009. 
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laminin, have both structural and adhesive functions, and are secreted in specific tissues 

by specialized cells, including fibroblasts (most connective tissue), chondroblasts 

(cartilage), and osteoblasts (bone).  

The collagens constitute a family of abundant ECM molecules that contribute 

significantly to the integrity and mechanical properties of tissues such as bone, skin, 

cartilage, and tendon [23].  Elastin is the dominant ECM protein in elastic fibers, a major 

component of arteries, lungs, and skin [24]. Laminin is the major non-collagenous 

component of the basal lamina, playing a critical role as the “glue” that holds many body 

structures together [25].  Fibronectin (FN) is a complex, multifunctional protein with 

multiple domains, each with specific binding sites for other matrix macromolecules and 

for receptors on the surface of cells. FN therefore contributes to both organizing the 

matrix and helping cells attach to it [22,25]. These essential roles of the ECM in 

regulating cell and tissue structure and function are illustrated schematically in Figure 

2.1). 

Cell-ECM Adhesive Interactions: Integrins as Pivotal Linkers 

Most of these structural aforementioned proteins also play fundamental roles in 

promoting cell adhesion and mediating intracellular signals critical to tissue function. In 

particular, cell adhesion to the extracellular matrix is essential for controlling such 

complex biological processes as embryonic development, wound healing, immune 

responses, and tissue organization and repair [26,27]. For example, cell-adhesive 

interactions with specific ECM proteins, such as FN and type I collagen, regulate bone 

cell survival, cell cycle progression, differentiation, and matrix formation; at a tissue  
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Figure 2.1. General key roles of the extracellular matrix in regulating cellular 
response in tissue. (A) ECM-interactions provide structure and anchorage for cells 
residing in tissue and modulate: (B) cell phenotype and differentiation, (C) migration of 
cells to specific spatial locales during development, repair, and growth, (D) matrix 
secretion, assembly and remodeling of the ECM environment, (E) secretion of local, 
soluble tissue-specific factors for degradation, repair, and migration, (F) inter-cellular 
communication, and (G) boundaries from one tissue to another, or within specialized 
regions of one tissue (GAGs = glycosaminoglycans). 

 

 
level, these interactions can play crucial roles in bone remodeling, maintenance, and 

formation [28,29].  

Moreover, ECM-mediated cell adhesion plays critical roles in animal 

development, as evidenced by the embryonic lethality of mice that have genetic deletions 

for particular ECM ligands and receptors [16,26].  Proteins such as FN are important in 

guiding cell movements during organism development, including migration of 

mesodermal cells at different embryonic stages [30]. These ECM components regulate 

cell behavior by interacting with cell-surface receptors to activate particular intracellular 



www.manaraa.com

 9 

signaling pathways, resulting in tissue-specific alterations in cell spreading, migration, 

cell-cell communication, and differentiation [31-33].  

Although there are many types of these cell receptors that facilitate cell-ECM 

interactions, cell recognize and adhere to ECM ligands primarily via integrins, a widely 

expressed class of cell-surface receptors. Integrins are transmembrane, heterodimeric 

proteins consisting of a particular combination of two non-covalently associated subunits 

(α and β) of which 24 specific combinations have been currently identified in humans 

[34] (Figure 2.2). Integrins interact with the ECM through their extracellular domains, 

and are linked to cytoskeletal elements and signaling molecules through their intracellular 

domains, functioning as the primary bridge between the ECM environment and the cell.  

Different α and β subunit combinations have the capacity to bind to one or more ECM 

ligands, whereas many ECM proteins can act as ligands for more than one integrin. 

Moreover, a wide array of integrins can be expressed, typically in tissue- and 

development-specific patterns. For example, osteoblasts and osteoprogenitor cells express 

multiple integrins, including α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, α8β1, αvβ3, and αvβ5, that 

can vary in degree of expression with the stage of the osteoblast and bind to numerous 

extracellular matrix components [35-37].   

Most integrins recognize specific binding sites, typically small peptide sequences, 

such as the ubiquitous arginine-glycine-aspartic acid (RGD) motif present in a variety of 

ECM proteins [38]. Integrin binding to ligands is a dynamic and highly regulated process 

that requires “activation” of the integrin and mechanical coupling to the ligand. This 

activation changes the conformation of the extracellular portion of the receptor into a 

more “high affinity” structural orientation for ligand binding, although divalent metal-
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ions are also typically needed for functional binding. After integrin-ligand binding, 

integrins associate with the actin cytoskeleton and begin to aggregate together in clusters 

forming focal adhesions, distinct structures that form intracellular scaffolds of structural 

and signaling molecules [19,39,40] (Figure 2.2 B, 2.3). Focal adhesions mediate stable 

adhesion by providing structural links between the ECM and cell cytoskeleton to regulate 

force-associated cell functions such as adhesion, spreading, morphology, and migration. 

These adhesive structures also activate discrete signaling pathways (MAPK, JNK, ERK) 

through accumulation and activation of signaling mediators, such as focal adhesion 

kinase (FAK) and Src, that can ultimately regulate transcription factor activity and direct 

major cell functions such as  migration, proliferation and differentiation [19,41] (Figure 

2.2 B). For example, α2β1-mediated cell attachment to type I collagen stimulates the 

tyrosine phosphorylation of focal adhesion kinase (FAK) and, subsequently, the 

activation of extracellular signal-related kinase (ERK), a mitogen-activated protein kinase 

(MAPK) that has been implicated in the control of osteoblast-specific gene expression 

and matrix mineralization [42,43]. 

 Specialized integrin-ECM ligand interactions can regulate many cell functions, 

including survival, proliferation, motility, morphology, and differentiation in a 

cell/tissue-specific and time-dependent manner. Numerous studies using antibodies that 

block specific integrins have underscored the importance of the FN interaction with β1 

integrins in regulating osteoblast, chondrocyte, myoblast (muscle cells), neural, and 

human mesenchymal stem cell survival, proliferation, gene expression, and cell fate 

[35,44-46]. In bone cells, blocking antibodies against collagen-specific α2β1 impede the 

expression of osteoblast-specific genes, such as osteocalcin, and inhibit calcification and 
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Figure 2.2. Integrins link the extracellular and intracellular environments. A) 
Integrin subunit structure. Each subunit (α and β) noncovalently associates with each 
other and contains a head (ligand binding), knee (genuflection), and hinge (at the cell 
membrane) region. B) Primary integrin activation and binding steps. (1) “low affinity” 
ligand binding unactivated integrin state demonstrating bending at knee regions, (2) “high 
affinity” ligand binding activated state as a result of interaction with intracellular (talin) 
and/or extracellular (divalent ions, ligands) factors, (3) integrin clustering into (4) focal 
adhesions, which also consist of  large intracellular scaffolds of structural and signaling 
components, important in regulating functions such as cell adhesion, cell shape, 
migration, proliferation, and differentiation. (FAK = focal adhesion kinase, EGF = 
endothelial growth factor, PSI = plexin-semaphorin-integrin). 
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Figure 2.3. Focal adhesion (FA) formation. FAs are initiated when integrins bound to 
ECM are activated and subsequently “pulled” together by cytoskeletal elements. 
 
 
 
 
 
 
formation of a mineralized matrix [47,48]. Engagement of distinct integrins will often 

direct particular cell responses which are specific to different tissues. While αvβ3 binding 

is pro-proliferative and aids in migration of osteoblasts, liver, and even cancer cells, 

activation of this same integrin will impede bone mineralization and osteoblast 

differentiation; these functions can be rescued by binding of α5β1 [49-52]. Leukocyte-

specific β2, including the Mac-1 receptor αMβ2, regulates macrophage adhesion to FN, as 

well as interactions with complement macromolecules and various domains of fibrinogen 

that may become exposed on different biomaterial surfaces [31,53,54].  A compendium 

of integrin subunit combinations and their demonstrated individual high-affinity 

recognition to various ECM proteins and their binding motifs is presented in Figure 2.4. 

These studies highlight the importance of specific integrin-ECM interactions to control 

tissue-specific cell function. 
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Figure 2.4. List of selected native ECM proteins and known associated binding 
epitopes. These epitopes are noted for specific recognition of distinct integrin subunit 
combinations.  
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Engineering Biomaterial Surface Properties for Integrin Binding 

Given the central roles of integrins in cellular processes, ongoing biomaterials 

research has focused on identifying key material surface characteristics that modulate the 

type, strength, and degree of ECM-integrin binding. Cell adhesion to ECM components 

or ECM-derived ligands on engineered surfaces governs host responses to implanted 

devices, integration of biomedical prostheses and tissue-engineered constructs, and the 

performance of biotechnological supports [55]. More specifically, integrins promote this 

robust cell adhesion to biomaterials by binding adhesive ligands on the material which 

have been (a) adsorbed from solution, (b) deposited by cells onto the surface, or (c) 

specifically engineered onto a surface, or a combination [56].  

 Several material surface properties have been identified that modulate the type, 

amount, strength and conformation of proteins adsorbed or immobilized on the surface, 

which, in turn, directly modulate the level and specificity of engaged integrins. A 

summary of these different adsorption states and their impact on integrin binding is 

illustrated in Figure 2.5. For example, following protein adsorption, various protein 

unfolding events may occur, either (a) exposing “cryptic” binding sites that promote 

engagement of more selective integrins or (b) “stretching” integrin-binding epitopes 

which may negatively affect integrin recognition and levels of binding [57,58].  

Physiochemical properties of material surfaces that influence the nature of 

integrin binding include substrate composition, surface energy, surface charge, surface 

chemistry, and topography. The underlying chemical composition of a biomaterial 

substrate alone may regulate cell-type specific integrin expression.  

 

 



www.manaraa.com

 15 

 

 

 

 

            

Figure 2.5. Different modes of adsorption to biomaterial surfaces for integrin 
binding ligands. A) Short oligopeptides typically do not physisorb well to metal and 
polymeric surfaces. B) favorable adsorption of larger ligands presenting adhesive 
epitopes in an accessible orientation promote integrin binding. C) unfavorable adsorption 
of ligands presenting adhesive epitopes in a non-accessible orientation reduce integrin 
binding. D) protein unfolding post-adsorption may “stretch” integrin-binding epitopes, 
resulting in sub-optimal or no integrin binding. E) protein unfolding may also expose 
“cryptic” epitopes that may promote interaction with different integrins. 
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Osteoblasts on titanium alloys express α2, α3, α4, α6, αv, β1, β3 integrin subunits; however, 

on CoCrMo alloys these same cells do not always express α3, α6, or β3 [59]. Osteosarcoma  

and bone marrow stromal cells cultured on hydroxyapatite (HA), titanium, and CaP-

coated titanium surfaces display differential trends in integrin expression [60,61]. It has 

been reported that HA-coated surfaces promote more robust adsorption of serum proteins 

compared to titanium, and that these proteins are in distinct conformations on each 

surface [62]. Surface energy and charge, which are closely related, also may elicit 

differential integrin expression profiles. Materials that are hydrophobic, including poly 

(methyl methacrylate) and polystyrene, typically exhibit higher levels of total protein 

adsorption compared to more hydrophilic surfaces, such as ceramics and metallic 

materials [21].  

Surface strategies to utilize high charge and  surface energy substrates have taken 

advantage of common electrostatic interactions that occur in many biomaterial interfacial 

events in physiological conditions. Ti implants have been engineered via glow discharge 

plasma (GDP) technology to exhibit altered charge density and increased surface energy 

[63]. It is hypothesized that this treatment enables favorable surface energy for binding 

serum proteins and growth factors that increase integrin expression for enhanced 

osteoblast differentiation compared to comparable uncharged surfaces.  

Surface chemistry tailoring of material and scaffold surfaces has emerged as 

another strategy to regulate protein adsorption and conformation in order to better control 

the biological activity of adsorbed adhesive proteins [64]. Using self-assembled 

monolayers (SAMs) of functionalized alkanethiols on gold to present well-defined 
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chemistries, biomaterial-dependent differences in the total amount and conformation of 

adsorbed FN have been identified [45,65]. These differences in FN conformation in turn 

affect integrin receptor binding [66-68]. Osteoblast-like cells bound selectively with α5β1 

to OH and NH2-presenting SAMs, but with both α5β1 and αvβ3 to COOH-presenting 

surfaces [17]. This regulation of α5β1 vs. αvβ3 binding was found to directly modulate 

osteoblast adhesion, signaling, proliferation, and differentiation, as well as influenced 

myoblast proliferation and myogenic differentiation [17,46]. Aside from demonstrating 

surface chemistry-dependent effects on integrin specificity, these data also underscore the 

importance of engaging specific integrins to achieve a directed cellular response. Nano- 

and micro-scale surface roughness also regulates integrin-mediated cell interactions.  

Human osteoblasts and bone marrow stromal cells exhibit distinct expression profiles of 

α3, α5 and α6 when cultured on either rough or smooth titanium substrates, ultimately 

influencing relative levels of adhesion and tissue-specific gene and protein expression 

[60]. Furthermore, MG63 human osteoblast-like cells exhibit an increase in α2, α3, α5, β1 

and β3 integrin subunits on micro-scale rougher surfaces compared to smooth titanium, 

resulting in enhanced integrin-mediated spreading and adhesion [60].  In particular, 

micro-scale surface roughness modulates α5β1 binding, correlating to a boost in FAK 

activation, local growth factor production, and osteoblast-specific bone markers [69-71]. 

 

ECM-mimetic Surface Modification Strategies 

Cell adhesion to ECM components or ECM-derived ligands on engineered 

surfaces governs host response to implanted devices, the degree of integration of 

ECM Surface Modifications  to Regulate Integrin-Mediated Cell Function 



www.manaraa.com

 18 

biomedical prostheses and tissue-engineered constructs, and the performance of 

biotechnological supports [55]. While typically easy to implement, most physiochemical 

surface strategies alone lack the ability to consistently generate selective integrin binding 

and integrin-mediated cell responses. Advances in understanding the role of specific 

ECM biomolecules in regulating integrin expression, cell adhesion, differentiation, and 

tissue remodeling have led to the investigation of targeted biochemical methods of 

surface modification. Recent biomimetic strategies have focused on the immobilization 

of selected ECM matrix components, including native structural proteins, peptide 

sequences, or synthetic derivatives based on matrix molecules [72]. The goal of these 

surface strategies is to modulate integrin-matrix interactions and promote general integrin 

binding to direct a specific cell/tissue response. Many of these ECM-derived surface 

ligand modifications and their integrin-specific effect on cellular functions will be 

discussed in further detail in the following sections of this chapter and are summarized in 

Figure 2.6. 

Coating of various biomaterial substrates with full-length ECM proteins 

modulates integrin binding to varying degrees. FN coatings on polystyrene increase 

osteoblast expression of α3 and α5 and reduce expression of α2, α6, and αv subunits 

compared to uncoated polystyrene [59]. Stromal cell, calvarial osteoblast, and osteoblast-

like cells exhibit enhanced β1-mediated adhesion, proliferation, and differentiation on 

FN- and COL I-coated surfaces compared to either uncoated glass, polystyrene, or 

titanium surfaces [73]. It has been postulated that FN-coated implants promote better 

early bone formation due to a chemotactic attraction of osteoprogenitors near the ECM-

coated implant surface [74].  
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Figure 2.6. ECM-derived surfaces to direct integrin specificity to direct a focused 
cell response. A) Major ligand surface modification schemes utilizing full and modified 
ECM ligands to design integrin-selective interfaces. B) Substrates which do not 
discriminate between integrin binding and activation often may produce antagonistic 
signaling pathways. Integrin-specific surfaces facilitate single integrin-mediated adhesive 
and signaling pathways to produce a more-directed and robust cell response. 
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Although there are conflicting data regarding the functional effects of collagen-

coating on polystyrene and titanium for various cell types, there is evidence of cell type-

specific distinct integrin expression profiles on collagen vs. non-collagen-coated surfaces 

[75,76].  Osteoblasts upregulate α3 expression over α6 on collagen type I-coated 

polystyrene, whereas collagen type IV coatings mediate greater α1, α2, α3, and β1 

expression and activation [59]. Other bone-specific matrix proteins, including bone 

sialoprotein and osteopontin, have also been explored as bioactive surface coatings to 

control β3-mediated binding and signaling  for human osteoblasts and stromal cells. Bone 

sialoprotein (BSP) is an acidic, noncollagenous glycoprotein abundantly expressed in 

mineralized tissues. BSP bound to collagen type I was found to orient in a bioactive 

orientation that augments β3 binding and  subsequent osteoblast adhesion and 

differentiation over unmodified interfaces [77]. Implants coated with BSP were found to 

be fairly osteoconductive yet supported only sub-optimal functional integration and 

mechanical fixation [78]. Vitronectin is another ECM protein that dominates serum-

exposed adsorption to polystyrene [56]. Interestingly, coating vitronectin on polystyrene 

enhances mouse osteoblast expression of αvβ3, but also has been shown to weaken 

adhesion of murine cells compared to uncoated polystyrene [36]. However, for human 

osteoblasts, adhesion to vitronectin was found to be primarily αvβ5-mediated and more 

robust over uncoated surfaces [79]. These studies highlight cell- type dependent effect on 

integrin binding and cell function that surface modifications using natural ECM proteins 

may elicit.  

Although promoting functional effects, the functionalization of biomaterials with 

natural matrix proteins has several drawbacks. Since many full-length matrix proteins 
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contain multiple integrin and other biomolecule binding sites, it is likely that these 

proteins may induce significant binding of more than one integrin, and hence, do not truly 

support an “integrin-specific” surface. Moreover, immunogenic and pathogen 

transmission concerns across species limit widespread use of these ligands as bioactive 

coatings for implants in humans. Furthermore, processing issues including scale-up 

difficulties and long-term stability may reduce the wide-spread application of these 

matrix functionalized surfaces. 

Synthetic biomimetic strategies to promote cell adhesion have primarily focused 

on presenting short bioadhesive motifs derived from ECM components onto biomaterial 

or implant surfaces [80]. A number of adhesion motifs from ECM components have been 

identified that can be subsequently incorporated in a small synthetic peptide. These 

motifs consist of a short linear sequence of amino acids, typically no more than a dozen 

amino acids in length, that one or more integrin receptors can recognize and bind [81]. 

These short sequences can be easily incorporated into adhesive oligopeptides that can be 

strategically immobilized in numerous ways on a biomaterial support to promote 

integrin-mediated adhesive and functional responses. These immobilization schemes 

include covalent tethering directly onto a biomaterial substrate, using plasma-treating to 

increase the functional groups on the substrate, or tethering onto polymer coatings 

functionalized on an underlying substrate.  Non-fouling supports (polyethylene glycol or 

alginate) are often used to better isolate the activity of these motifs by utilizing a 

background with minimal non-specific protein adsorption [82].  

Small Peptide Biomimetic Surface Strategies 
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Many of these adhesive sequences are specifically associated with ECM 

components from a particular tissue environment. For example, BSP- and collagen-

derived sequences have been identified that remain functional only with bone- associated 

cell types. Multiple integrin-binding sequences have also been identified on single ECM 

proteins. For instance, the EILDV and REDV sequences on FN mediate α4β1-binding of 

endothelial cells, while the RGD and PHSRN sequences, when presented together 

correctly, promote α5β1-mediated osteogenic differentiation [83,84]. The adhesion motifs 

DGEA and GFOGER  from collagen type I both mediate α2β1-mediated function -  

although in separate cell systems, i.e., neurite migration for DGEA and osteoblast 

differentiation for GFOGER [85,86]. Other ECM-specific integrin-binding sequences 

identified include the IDAPS sequence  in osteopontin, which promotes α4β1-mediated 

adhesion of lymphocytes and the KQAGD sequence in fibrinogen,  which itself controls 

αIIbβ3-adhesion of osteoclasts [87,88]. Hydrogels functionalized with adhesive peptides 

incorporating IKLLI, IKVAV, LRE, PDSGR, RGD, or YIGSR, and the collagen type I 

sequence, DGEA, differentially regulated pancreatic cell survival [89]. Many of these 

synthetic oligopeptide-based strategies have been successfully used in vivo for tissue 

repair and regeneration. For example, GFOGER-coated implants promote extensive bone 

formation and implant integration in orthopedic applications [48].  

The most common oligopeptide strategy to control integrin binding relies on the 

surface presentation of the arginine-glycine-aspartic acid (RGD) adhesive sequence, 

which mediates cell attachment to several matrix proteins, including fibronectin, 

vitronectin, osteopontin, and bone sialoprotein [90].  Since the RGD sequence is an 

ubiquitous adhesive motif in most ECM components, biomaterial substrates and tissue-
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engineered constructs coated with RGD-peptides have been employed to control in vitro 

adhesion, migration, and differentiation in numerous cellular systems, including neural, 

endothelial, and bone cells [91-93]. For example, synthetic ECM proteins incorporating 

the GRGDSP cell-binding domain as well as elastin-like repeats (for more robust 

mechanical strength) enhance adhesion and spreading of endothelial cells over similar 

adhesive peptides [94]. The density and presentation of RGD peptides can have a 

profound effect on their overall influence on cell function for certain cell types. The 

degree of osteoblast proliferation, bone-specific gene expression, and differentiation 

varies directly with RGD-ligand density [95]. However, relatively high RGD densities 

can also negatively affect neurite extension and outgrowth in 3-D gel scaffolds [96]. 

Although RGD-immobilized peptides typically mediate osteoblast cell function through 

the αvβ3 integrin, altering the structural presentation of this motif can mediate other cell 

type functions via non-αv and/or β3 integrins [97]. For example, immobilized synthetic 

alkyl amphiphiles of RGD promote α3β1-mediated adhesion and migration of melanoma 

cells [98]. Grafting implant materials with either cyclic or oligomeric peptides presenting 

multiple RGD arms increases human osteoblast adhesion and spreading in a primarily 

αvβ5-dependent mechanism, depending on alterations to the RGD structure and the exact 

flanking sequence surrounding the tripeptide [99,100]. Although it has been shown that 

RGD presented in cyclic, or “constrained”, conformations exhibit enhanced integrin 

affinity to many αv or β3 integrins compared to linear RGD, due to the conformation of 

RGD and its flanking regions, these peptides still retain minimal α5β1 selectivity [95,99]. 

Nonetheless, while many studies have demonstrated that RGD-functionalized 

materials support integrin-mediated adhesion, proliferation, and differentiation in vitro, 
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mounting evidence suggests that this biomimetic surface strategy does not enhance 

biomedical implant integration in more rigorous animal models. A number of studies 

have concluded that RGD-immobilized titanium implant coatings do not improve peri-

implant new bone formation and yield only marginal increases in implant integration and 

mechanical fixation [10,12,100-104]; in contrast, very few studies demonstrate a 

significant  in vivo enhancement in osseointegration [105,106]. Furthermore, when RGD 

peptides were immobilized onto hydroxyapatite-discs in conjunction with serum proteins 

such as FN and vitronectin, there was a detrimental effect on mesenchymal stem cell 

survival as well as new bone formation [100]. Even the benefits of this biomimetic 

surface treatment in vitro are unclear. Osteoblasts cultured on RGD functionalized PLL-

g-PEG surfaces exhibit reduced bone-specific markers and osteogenic differentiation 

compared to unmodified surfaces [107]. Even RGD peptides of varying flanking 

sequences tethered on SAMs all displayed sub-standard adhesive capacity compared to 

full-length FN surfaces [108,109]. Although the stability, relative cost-effectiveness, ease 

of immobilization, and reduced immunogenicity are all advantages of using these small 

adhesive motifs, there are several limitations that reduce their efficacy for more directed 

tissue repair and regeneration.  First, the biological activity of these peptides is 

substantially lower than that of the whole protein due to the absence of modulatory 

integrin-binding domains. Second, this lack of essential modulatory domains limits 

surface selectivity for integrins.  Because RGD is recognized by a large number of 

integrins in numerous cell types, this lack of integrin specificity may result in non-

discriminatory attachment of cells to the RGD-coated surfaces. For example, in order to 

achieve high affinity α5β1-binding, both the RGD sequence in the 10th type III repeat of 
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FN as well as its synergy site, the PHSRN sequence in the 9th type III repeat, are required 

to be presented together [110]. Since α5β1 is especially critical for induction of various 

osteoblastic signaling pathways and activities, this lack of integrin binding may be 

detrimental for orthopedic applications. Third, these small peptides may lack the ability 

to bind specific receptors due to conformational differences among adhesive sequences 

compared to the native ECM ligand. As a consequence of these collective limitations, 

newer generations of bio-inspired surfaces have focused on more effectively mimicking 

the structure and make-up of natural ECM integrin-binding epitopes. 

 An advanced biomimetic surface strategy that has been recently explored to 

obtain more directed cell/tissue response is the engineering of surfaces to engage specific 

integrin receptors among RGD-binding integrins [28]. Recent studies suggest that the 

marginal healing responses of RGD-functionalized implants might arise from the lack of 

selectivity of this adhesive ligand for specific integrin receptors [49,111]. Since activation 

and signaling by more than one type of integrin receptor on the same cell may induce 

antagonistic cellular responses, as evidenced by the aforementioned effect of α5β1 vs. αvβ3 

binding on osteoblast function, a more selective integrin binding surface may achieve a 

more controlled cellular response [17]. Unfortunately, full-length matrix proteins possess 

multiple integrin binding sites, whereas short RGD peptides can also bind multiple 

integrins without a high degree of specificity. Therefore, several recent approaches have 

utilized ligands presenting this RGD motif with additional modulatory domains to 

selectively target particular integrin receptors, while excluding other non-essential 

biological domains.  

Multi-Motif Integrin-Specific Ligands 



www.manaraa.com

 26 

Although cyclic-RGD peptides improve ligand specificity for several integrins, 

including αvβ3 and α3β1, the ability of these constrained peptides to achieve levels of high 

affinity α5β1 binding comparable to full-length FN is limited. As previously mentioned, 

RGD and its PHSRN synergy sequence in FN individually contribute little to high 

affinity α5β1 binding, but, when presented together, promote α5β1-mediated cell adhesion 

[94]. The synergistic effects of the RGD and PHSRN sites is strongly dependent in the 

molecular structure as slight alterations in the nanoscale spacing (30-40 nm), relative 

angle, mechanical tension, and flanking sequences between these two sites result in 

significant losses in biological activity and integrin binding behavior [113-115]. Because 

of this tight dependence of receptor binding on the structural context of the ligand, the 

ability to mimic the integrin binding and functional abilities of the native ligand is 

especially challenging with single RGD peptides. FN-mimetic peptide-amphiphiles and 

multi-motifed peptides presenting both the RGD and PHSRN site have been engineered 

to address some of these structural limitations and to study at different molecular levels 

the ligand binding properties of α5β1 [116]. Surfaces of PEG molecules attached to 

phospholipids presenting the GRGDSP and PHSRN sites were used to demonstrate that 

α5β1 binding to peptide-amphiphiles is dependent on membrane composition, 

temperature, and density [117]. Bioartificial membranes constructed from GRDGSP and 

PHSRN have led to insights on binding/unbinding events with α5β1 down to a single 

molecular level. The results of research with these FN-mimetic peptide-amphipiles  

suggest that  accessibility and relative spatial orientation is crucial for FN-like robust α5β1 

binding [118]. An RGD-PHSRN amphiphile which presented the RGD motif in 

structurally distinct variations exhibited enhanced αvβ3 specificity when the RGD was 
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looped rather than linear [119]. Another RGD-PHSRN amphiphile consisting of the two 

adhesive motifs, a spacer, and a linker (designed to mimic the distance and 

hydrophobicity of the two motifs in FN) was reported to enhance endothelial cell 

adhesion over FN, although a direct comparison of the two surfaces on an equimolar 

basis was not performed [120,121]. Moreover, another similar RGD-PHSRN amphiphile 

that was connected by a linker recapitulating the native spacing of fibronectin enhanced 

osteoblast differentiation over surfaces immobilized with RGD alone [122]. Linear and 

cyclic lipid-linked RGD ligands also seem to enhance integrin-mediated adhesion, even 

at low surface densities [123]. 

Although several studies have indicated that FN-mimetic peptide-amphiphiles 

enhance integrin binding and cell function over RGD alone, the relative biological 

activity of these second-generation peptides, compared to the native protein and even 

simple RGD peptides, remains poorly characterized. Recently, a study in which both 

RGD and an RGD-PSRHN peptide, mimicking the natural spacing of FN, were tethered 

on a mixed SAM at equimolar levels revealed no significant differences in adhesion or 

integrin binding specificity among the two ligands [108]. Comprehensive analyses, 

including antibody blocking, varying ligand surface densities, and signaling evaluations 

are necessary to more fully establish the adhesive and functional potential of these 

engineered interfaces. Hence, although these adhesive interfaces do promote integrin-

mediated adhesion, mimicking the full biological activity of the native protein (FN) using 

these synthetic short adhesive motifs remains challenging. 
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As an alternative strategy, the engineering of high molecular weight ligands 

recapitulating the primary, secondary, and tertiary structure of the native protein has been 

very recently pursued to reconstitute full biological activity and convey integrin binding 

specificity. In particular, recombinant fragments of FN incorporating specific integrin-

binding domains of FN have been designed. For example, FN-ligands that incorporate the 

10th type III repeat (RGD) or the 9th type II repeat (PHSRN) have been recently 

engineered [124]. These protein fragments present the aforementioned adhesive motifs or 

flanking sequences in the correct structural conformation and spatial orientation as native 

FN. These recombinant FN fragments were prepared using DNA recombinant 

technology, which affords flexibility in designing unique ligand characteristics to study 

structure/function, control immobilization and orientation, and enhance bioactivity. Using 

fragments of FN limits antigenicity (compared to full-length FN) and eliminates other 

modulatory domains which may either interfere with specific integrin binding or elicit 

undesired inflammatory responses. FN10, a FN fragment comprising the 10th type III FN 

repeat and engineered to present a modified RGDWXE motif, exhibited more robust 

binding to human αvβ3 compared to normal RGD-containing FN10 fragments [125].  This 

finding highlights the utility of using recombinant protein technology to correlate 

structural adhesive motif characteristics with receptor binding activity and cell function. 

Specific binding to α4β1 has been linked to an alternatively spliced V (residues 1-25 of the 

IIICS) region of FN distant from the central cell-binding domain (V25/CS-1) [126]. 

FNIII(del1-7), a recombinant FN ligand that incorporates this V25/CS-1 region and the 

FN-Derived Integrin-Selective Ligands 
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tetrapeptide Arg-Glu-Asp-Val (REDV) motif (recognized by α4β1), display α4β1-mediated 

function for neural crest cells, including adhesion and matrix assembly [127].  

Although much surface engineering work has centered on RGD-binding 

receptors, other integrin receptors play critical roles in cell and tissue responses. α1β1 and 

α2β1 integrins are the major collagen-binding integrins, with α2β1 dominating osteoblast 

integrin-mediated adhesion to type I collagen, the major ECM constituent of bone [23].  

The α2β1-collagen interaction promotes osteoblast-specific signaling, gene expression, 

and differentiation, even in multipotent bone marrow stromal cells [47,128]. Adhesion 

sequences have been identified that regulate collagen-integrin interactions, including the 

collagen-binding motif DGEA and the hexapeptide sequence GFOGER (residues 502-

507 of the alpha1(I) chain in type I collagen) [86]. However, linear peptides using these 

sequences lack the full binding specificity for α2β1 in vitro compared to full-length 

collagen in multiple cell types [129]. Not surprisingly, molecular binding studies found 

that full α2β1 recognition and high affinity binding of this GFOGER sequence is critically 

dependent on the tertiary structure of collagen, which resembles a triple-helix [130-132]. 

To engineer a stable, biomimetic ligand that reconstitutes this crucial tertiary collagen 

structure, a  4 kDa peptide was engineered that incorporates this α2β1-specific GFOGER 

sequence surrounded by GPP triplet repeats that provide structural motifs for the 

formation of a stable, right-handed triple-helical structure mimicking native collagen 

[133]. When this GFOGER peptide was adsorbed on a polystyrene surface, this peptide 

specifically targeted the α2β1 integrin receptor on osteoblasts, and supported FAK 

activation, osteoblast-specific gene expression, and matrix mineralization at levels 

Collagen-Mimetic Integrin-Specific Ligands 
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comparable to adsorbed collagen type I surfaces [86]. Integrin-subunit blocking-antibody 

studies confirmed α2β1-mediated adhesion for GFOGER coatings on orthopedic-relevant 

titanium substrates. In addition, studies using rat bone marrow stromal cells verified that 

GFOGER-coated titanium surfaces induced higher levels of osteoblast-specific gene 

expression, enzyme activity, and matrix calcification compared to serum-exposed 

titanium substrates [49]. Notably, GFOGER peptide coatings also significantly improved 

peri-implant new bone formation, implant integration, and functional osseointegration 

compared to the current clinical standard, unmodified titanium [49]. Given the ubiquitous 

role of collagen in other tissue types,  these studies may point toward a significant clinical 

role for this GFOGER biomolecular strategy to control even non-orthopedic implant-

tissue responses.  

In fact, similar triple-helical GFOGER peptides have indeed been employed fairly 

successfully in other tissue systems to promote in vitro α2β1-mediated adhesion and 

function [133]. Peptides incorporating slight alterations in the flanking sequence to 

GFOGER, resulting in variable differences in helix stability, mediated liver cell and 

mouse fibroblast adhesion and spreading to varying degrees [134-137]. The collagen-

mimetic peptides, which demonstrated greater relative stability than others, afforded 

higher levels of adhesion for these cell types. Mixed ligand surfaces presenting this triple-

helical GFOGER peptide with other ECM-derived adhesion motifs on the same surface 

have also been explored in various tissue systems. A triple-helical peptide utilizing the 

collagen residues 496-507 (incorporating the GFOGER motif as well as 6 other amino 

acids) presented with a second ligand, an endothelial proliferating motif from the ECM 

protein SPARC, mediated α2β1-dependent activation of endothelial cells, although  
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presentation with the second ligand had no significant effect compared to the GFOGER 

peptide alone [138,139]. Interestingly, compared to single ligands, incorporation of this 

triple-helical GFOGER peptide in an amphiphile, which also incorporated this SPARC 

motif as well as a pseudolipid (monoalkyl hydrocarbon chain) for flexible interaction, 

showed the greatest activity in the activation and adhesion of endothelial cells [140]. 

These conflicting results may be explained by differences in ligand density as well as 

presentation of the two motifs to modulate optimal cell interactions.  

Finally, non-fouling surfaces presenting both this α2β1-specific triple-helical 

GFOGER peptide as well as the α5β1-specific ligands were engineered in order to 

evaluate the effects of integrin crosstalk on adhesive responses. Mixed ligand surfaces 

synergistically enhanced cell adhesion strength, focal adhesion assembly, FAK 

activation, and proliferation rate compared to single FN and COL-I mimetic ligand 

surfaces [141]. Given the crucial and overlapping roles multiple integrins play in various 

cell signaling and functional pathways, engineering interfaces to present multiple 

integrin-specific ligands may be a successful strategy to achieve more robust and/or 

complex, directed cell/tissue responses. Collectively, these studies suggest that creating 

biointerfaces with highly directed integrin selectivity may be a clinically applicable 

surface strategy to obtain a directed tissue healing response, and, moreover, may be a 

facile approach for more robust tissue integration of other biomedical devices. 

A key property of the ECM environment is its tightly regulated, supramolecular 

3-D structure that provides positional and environmental information essential for tissue 

function. In particular, the fibrillar architecture of FN is a major ECM network that 

FN-Derived Integrin Ligands to Direct Matrix Assembly 



www.manaraa.com

 32 

modulates cell cycle progression, migration, differentiation, and even assembly of other 

matrix proteins in tissues at all stages of development [142-144]. FN matrix assembly is a 

multi-step process which involves integrin interactions with specific regions of FN, that, 

in coordination with the actin cytoskeleton, expose “self-association” sites on FN 

(initiation) and mediate subsequent fibril assembly steps [145]. In addition, these specific 

integrin-FN interactions regulate cell-mediated FN secretion that is integral in normal 

matrix assembly and remodeling [145]. Unfortunately, although cells will organize 

assembled matrices on biomaterials, most synthetic materials do not directly recapitulate 

this essential function of the ECM, limiting the use of these materials in tissue 

engineering and regenerative medicine.  Development of FN-derived ligands that interact 

with specific integrin receptors have afforded more precise control over FN matrix 

assembly on biointerfaces. FN10, a recombinant fragment of FN incorporating the 

adhesive RGD motif, is an essential requirement for initiation of α5β1-mediated FN 

matrix assembly. Presentation of FN10 with FN9, incorporating the synergy site PHSRN 

of α5β1, augmented assembly over FN10 alone [146]. Interestingly, when mice were 

mutated so that the RGD motif became RGE on all cellular FN, the FN matrix assembly 

was not compromised, although embryonic development was stunted [147]. Studies using 

other recombinant fragments of FN containing various deletions of type III repeats 

verified that the RGD sequence is essential for the initiation step, but fibrils can form 

independently of the FNIII1-7 modules [148]. It is noteworthy that deletion of the 1st 

through 7th type III repeats did alter the rate of FN assembly, suggesting a role for non-

essential epitopes such as these to modulate different stages of matrix formation. 

Although the RGD-dependent α5β1-mediated assembly pathway is perhaps the most 
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studied, other integrins and FN regions have also been identified that are actively 

involved in matrix assembly. FNIII(del1-7), a recombinant FN ligand that incorporates 

the V25/CS-1 region and the tetrapeptide Arg-Glu-Asp-Val (REDV) motif recognized by 

α4β1, was found to promote α4β1-mediated FN matrix assembly, although actin filament 

morphology was altered compared to α5β1-mediated assembly and cell proliferation rate 

was unaffected [148].  

A 13 amino acid sequence localized between the type II2 and I7 repeats of FN, 

the self-assembly domain, was found to induce the assembly of fibrillar ECM; this 

sequence also exhibits collagen binding activity in tumorigenic cells [139]. Applying this 

knowledge, a synthetic oligopeptide FN13 (KGGGAHEEICTTNEGVM) incorporating 

this sequence was covalently tethered to a non-fouling mixed SAM surface to nucleate 

the assembly of fibrillar FN matrix networks [149]. A specific surface threshold of 

tethered FN13 not only nucleated robust FN fibril matrices, but also served as a template 

for collagen fibril assembly, along with increasing osteoblast cell proliferation rate over 

scrambled FN13, RGD-tethered, and unmodified surfaces. This synthetic matrix-

nucleating ligand offers the distinct advantage of spatial control over matrix assembly, 

although reproduction of these results in a 3-D system may be more challenging. These 

synthetic matrix assembly-directing ligands may be of practical use in bottom-up organ 

building and other longer-term in vivo biotechnological applications, as well as 

fundamental studies on cell-matrix interactions. 

Advanced ECM-Mimetic Surface Strategies: Multivalent, Clustered Ligands 

After integrin binding to a ligand, clustering of integrins facilitates assembly of 

multiple cytoplasmic regulatory and structural proteins into important supramolecular 
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structures, termed “focal adhesions”. These structures activate various intracellular 

signaling pathways that regulate gene and protein expression, migration, and 

differentiation and mediate strong adhesive forces (Figure 2.7) [150]. Multivalent 

integrin-binding ECM ligands have been developed to promote integrin aggregation by 

presenting nanoscale clusters of adhesion ligands, in particular, RGD peptide-based 

motifs. These ligands have been immobilized on either 2-D surfaces or beads to study the 

effect of integrin aggregation/clustering on cell responses. Key multi-clustered integrin 

ligands and the underlying bases of ligand clustering are shown schematically in Figure 

2.7. For example, the adhesion ligand GRGDSPK was presented in nanoscale synthetic 

polymer clusters of varying size on non-fouling substrates [151]. At higher cluster sizes 

(>3.6 ligands/cluster) an adhesion strengthening response was observed in which greater 

fractions of cells remained adherent as the detachment force was increased up to a force 

threshold. A similar polymeric RGD-dendrimer system correlated larger cluster sizes 

with an increase in cell migration behavior [152]. Alpha-helical coiled coil peptides fused 

with an RGD-containing fragment were over 100-fold more efficient than linear RGD 

peptides in blocking αvβ3-mediated adhesion and, once immobilized on a surface, 

significantly more efficient in promoting cell adhesion and spreading [153]. Taking 

advantage of the robust recognition of αvβ3 for the RGD sequence, template assembled 

cyclopeptides of RGD were used to successfully target in vitro αvβ3-expressing cells for 

drug delivery and detection applications [154,155]. Possible explanations for the 

augmented efficacy of αvβ3 selectivity and related adhesive activities may be the 

relatively close RGD spacing, higher localized density, and constrained tripeptide and 

flanking sequence conformations. More rigorous studies must be conducted to ascertain 
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the effect of these multimeric RGD ligands on integrin clustering and higher-order cell 

functions compared to native matrix proteins and single ECM-mimetic ligands.  

However, given the lack of integrin selectivity of RGD peptides for one specific 

integrin, such as α5β1, multimeric ligands presenting more integrin-specific components 

may be useful in examining functional effects of single integrin clustering. Moreover, 

these clustered ligand schemes rely mainly on “statistical averages” for valency values, 

rather than absolute ligand cluster sizes. Multimers presenting 1,2,3, and 5 heads of 

FNIII7-10, an α5β1-specific FN-mimetic ligand, have been developed to investigate the role 

of α5β1 clustering on integrin-cytoskeleton interactions in fibroblasts [156]. Beads of 

these FNIII7-10 multimers localized to actin filaments and the higher valency (N=>3) 

multimer beads translocated along the cell periphery on actin highways, describing a link 

between ligand clustering and cytoskeletal pathways. The overall efficacy of these 

multimeric integrin-specific ligands in coordinating a variety of cell adhesive responses 

allude to the potential of these next generation ligands for use on biointerfaces for more 

controlled cell responses and therapeutic detection applications.  
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Figure 2.7. Integrin-specific ligand clustering may augment integrin-mediated cell 
functions. A) Schematic of various clustered ligand schemes that have been developed 
recently including: 1)  nano-spaced ligands covalently tethered to micro-scale beads, 2) 
ligands functionalized on “star polymer” systems on substrate surfaces, 3) ligands 
tethered to the backbone of polymer gels/coatings in 2-D/3-D, and 4) “multi-headed” 
ligands which present individual integrin ligands nano-scale spacing apart. B) Various 
cell functions which appear to be modulated partly by ligand clustering effects.  
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Orthopedic Implant Surface Technologies 

Bone Function and Formation 

Bone is a composite material consisting of an organic component, primarily type I 

collagen for tensile strength, and an inorganic component, primarily mineral which 

contributes to resistance to compression [157]. Bone has several roles in the body, 

including a mechanical role as the structural support for tissues and organs, a central 

calcium reservoir for the body, and storage within the marrow cavities of mesenchymal 

and hematopoietic stem cells as well as immune cells.  

Bone formation initially involves undifferentiated mesenchymal cells or 

preosteoblasts developing into osteoblasts, which promote bone formation by regulating 

deposition of osteoid and mineral nucleation [158]. Subsequent matrix mineralization 

around these osteoblasts eventually transforms these cells into osteocytes. Osteoclasts are 

later recruited to initiate the remodeling process through the secretion of hydrogen ions 

and acid proteases, converting immature woven bone into structurally mature and solid 

lamellar bone [159]. Following the initial ossification of the skeleton, osteoclasts and 

osteoblasts begin the dynamic and highly regulated process of modeling and remodeling 

bone.   

Cortical and trabecular bone contain the same fundamental constituents: bone 

resorbing cells (osteoclasts), heterogeneous populations of bone forming cells 

(osteoprogenitors, osteoblasts, osteocytes, and periosteal lining cells), and a highly 

organized ECM, which consists of a poorly organized hydroxyapatite mineral phase and 

a mixture of collagenous and noncollagenous proteins (including osteopontin, bone 

sialoprotein, osteocalcin, fibronectin, and collagen I) which are expressed during 
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different stages of maturation [160]. Skeletal development involves two main 

mechanisms: intramembranous ossification and endochondral ossification. In 

intramembranous ossification, mesenchymal precursors differentiate into an osteoblastic 

phenotype. Endochondral ossification, occurring during fracture  healing, involves the 

formation of an intermediate avascular cartilaginous matrix phase from mature 

hypertrophic chondrocytes. This cartilaginous matrix then becomes vascularized, 

calcified, and remodeled by osteoblasts/osteoclasts into mineralized matrix, and, 

ultimately, lamellar trabecular bone [161]. 

 

Bone Growth and Differentiation Factors 

Stromal cells (BMSCs) are a heterogeneous population of connective tissue cells 

that reside generally in the bone marrow and retain a robust multipotency, similar to 

MSCs, which are often used interchangeably. Differentiation of BMSCs into an 

osteoblastic phenotype is regulated by a spatiotemporal cascade of growth, transcription, 

and differentiation factors, and ECM protein remodeling and secretion [162].  

Osteoinductive factors, including BMPs, bind to transmembrane receptors and initiate 

specific signaling cascades that often converge to activate one or more osteogenic 

transcription factors [162]. In particular,  the bone-related transcription factors 

Runx2/Cbaf1 have been heavily studied in their temporal role in commitment of 

multipotent stem-like cells into the osteoblastic lineage [163,164]. Forced expression of 

Runx2 upregulates osteoblast-specific gene expression and induces mineralization in a 

cell-dependent type format. Steroids, including the vitamin D group of molecules, have 

been linked as transcriptional regulators of bone matrix proteins, stimulating the 



www.manaraa.com

 39 

expression of osteocalcin and osteoclast differentiation. Moreover, vitamin D has been 

shown to affect the surface roughness-dependent differentiation of osteoblasts via an 

integrin-linked pathway. Detection of various secreted ECM proteins, including bone 

sialoprotein, osteocalcin, and osteopontin, has been widely used as temporal indicators of 

osteoblastic differentiation.  More long-term differentiation. Levels of bone-specific 

alkaline phosphatase activity are valid biochemical indicators of early bone turnover and 

osteoblastic differentiation. Since the initial protein matrix of bone consists partly of 

calcium salts, assaying for calcium levels in cultures is another indicator of more 

advanced osteoblastic differentiation.   

Osseointegration of Bone-Anchored Implants 

The goal of current orthopedic implantology is the engineering of devices that 

induce controlled, guided, and rapid healing and proper osseointegration, defined as the 

strong anchorage between newly differentiated bone and the implant [6]. Bioactive 

porous coatings, including bone cement (PMMA), have been partially successful in 

augmenting initial bone fixation to the implant, although are prone to brittle fracture over 

time[7]. Implants that support faster osseointegration allow for quicker and more 

complete patient recovery, and reduced osteoatrophy of the surrounding bone. 

Nonetheless, in order to design effective surface strategies to achieve these goals, it is 

crucial to understand as completely as possible the process of tissue healing and the 

various host and material responses to implanted biomedical orthopedic devices.  

Host and Material Response at the Bone-Implant Interface 

After several days following implantation of Ti implants, mesenchymal stem cells 

housed in the bone marrow will migrate toward the defect site and osteoblasts begin 
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producing osteoid near the surface [8,9]. In addition, bone has also been observed to form 

away from the implant surface near the intramedullary canal, suggesting new bone 

formation occurring in two directions, towards and away from the bone-implant interface 

[10].  

Ideally, an orthopedic implant will be anchored and fixed to bone and present a 

strong bone-implant interface. Variables that influence the quality of this fixation include 

material factors, such as implant composition, shape, surface topography and chemistry, 

as well as non-material issues, including surgical technique, patient lifestyle and bone 

quality [11-14]. Strategies to improve both early and overall osseointegration of bone-

anchored implants have focused primarily on the material variables that have been shown 

to impact the local healing response. These separate factors include implant shape, 

material, and, most significantly, surface properties [12,14,15].  

The first event that occurs near the defect site upon implantation of biomaterial 

implants is the adsorption, within seconds, of proteins, lipids, and ions from blood at or 

near the implantation site [16-18]. In particular, proteins can denature, desorb, or remain 

in native conformation on the device surface over time.  These adsorbed proteins play a 

critical role in regulating cell-biomaterial interactions mainly because cell membrane 

receptors, specifically integrins, directly associate and interact with them [11]. It is the 

surface properties of the implant that dictate the quantity, nature, and type of proteins that 

are initially present. Surface parameters including composition, topography, roughness, 

surface energy, and chemistry have individually and collectively been shown to affect the 

in vivo biological nature of the implant surface shortly after implantation [11,14]. In turn, 
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the nature of the implant surface directly has an influence on the subsequent type and 

adhesion of cells on the surface, and, further, the function of these adherent cells.  

Orthopedic Surface Strategies 

Since cells mainly interact with the surface of an implant via integrins as 

previously discussed, current efforts to engineer a more integrated bone-implant interface 

have largely concentrated on surface modification strategies in order to obtain the desired 

biological response. Orthopedic titanium alloy has been the most extensively used metal 

for bone-integrated implants due to its excellent fatigue properties and the dense, passive 

oxide layer which renders it one of the most highly corrosion-resistant metals in existence 

[30,31]. Titanium alloys display high biocompatibility and “gold standard” 

osseointegration properties for bulk orthopedic implant materials [32]. Most current 

surface modification approaches focus on modifying the surface of titanium implants in 

three separate manners: morphologically, physicochemically, and biochemically.  

Morphological parameters, such as surface roughness and porosity of implant 

coatings, have been modified to generally satisfactory clinical results. Macroporous 

coatings have displayed significant mechanical interlocking during the initial time period 

post-implantation [33], but evidence of porous-surface delamination and femoral atrophy 

at longer time points, as well as low overall bone mineral ingrowth relative to total pore 

volume, may collectively limit the longer-term applicability [34]. In vitro studies reveal 

that surfaces with microrough topographies promote the formation of an osteogenic 

environment [35], reduce osteoclast activity [36,37], improve the osteoblast-like cell 

phenotype [38,39], and enhance differentiation [40,41]. In vivo studies have 

demonstrated greater mechanical interlocking, and higher levels of bone formation and 
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apposition compared to smooth surfaces [14]. Nevertheless, these strategies alone do not 

perform well in challenging cases, including inferior patient bone quality and quantity, as 

evidenced by poor mechanical fixation and slow rates of osseointegration [42].  

Physiochemical strategies take advantage of the theory that the initial type, 

amount, and conformation of proteins on the surface can have significant downstream 

effects on integrin binding, cell adhesion and, ultimately, tissue response, as previously 

discussed [43]. Titanium surfaces of increased energy and charge have been proposed to 

multiply the common electrostatic interactions that occur in many early biological-

implant interfacial events. These surfaces have shown  improved osteoblast 

differentiation in vitro compared to unmodified titanium surfaces [44]. Bone cement 

coatings, which display favorable surface energy for binding bone growth factors and 

proteins, have been used clinically for decades successfully to improve implant 

osseointegration and lifetime [45]. Finally, tailoring the implant surface chemistry has 

recently emerged as a strategy to elicit specific protein conformation and adsorption in 

order to elicit favorable bone cell adhesion and function. Our lab and others have 

demonstrated that surface chemistry-dependent differences in adhesive interactions 

modulate osteoblast differentiation [46,47]. Nonetheless, purely physiochemical surface 

strategies are inherently limited by lack of control of surface protein and cell specificity, 

making it difficult to direct precise cellular function and downstream pathways.   

Recent advances in our understanding of the importance of distinct adhesion-

influenced cellular pathways in promoting proper osseointegration have led to the 

investigation of biochemical implant surface modification methods as a potent strategy to 

target bone formation. These strategies involve delivering bioactive proteins, peptides, 
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enzymes, and/or growth factors to the implant surface to elicit a specific cellular 

response. As discussed in great detail in the beginning of this chapter, engineering 

orthopedic surfaces with immobilized biomimetic ligands, including integrin-binding 

peptide sequences such as RGD, remains one of the most promising surface strategies to 

improve implant osseointegration. 

Biomolecule Delivery Approaches to Engineer Bioactive Surfaces 

The surface delivery method for these biomolecules is critical for the overall 

functional efficacy of the implant. The biomolecule must be at or above a threshold 

density and it must also remain on the surface for a long enough time to elicit the desired 

cellular response. Since many biomolecule-functionalized surfaces have displayed in 

vitro density-dependent effects on cell adhesion, it is important to be able to control 

biomolecule surface density [48,49]. The simplest way of immobilizing biomolecules on 

a tissue-material interface is via adsorption from a protein solution prior implantation. 

Studies have shown that adsorbing TGF-β on porous coatings and alkaline-phosphatase 

on titanium can each enhance bone growth at the implant-tissue interface[50]. The clear 

advantage of the adsorption method is the clinical simplicity of the approach and easy 

maintenance of sterile surfaces. However, this method provides minimal control over the 

orientation, conformation, and retention time of the biomolecule, limiting its potential in 

directing specific cellular pathways and function. 

In order to create a biointerface with more control over the presentation and 

retention of biomolecules, covalent tethering is a more optimal method of delivery. In 

vitro creation of well-defined, stable surfaces on gold substrates for covalent tethering of 

biomolecules has been performed using self-assembled monolayers (SAMs). Stable 
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SAMs formed by depositing alkanethiols with different terminal functional groups on 

gold have been used as model surfaces to control the tethering of ligands in a protein-

adsorption resistant background [51]. Furthermore, the type and quantity of functional 

groups can be easily chemically tailored, offering versatility for protein tethering [52,53]. 

However, studies exploring the use of SAMs in physiological settings demonstrate 

minimal stability of these surfaces in an in vivo-like environment, restricting the use of 

this immobilization system as model in vitro surfaces [54]. In response to creating a more 

in vivo-relevant ligand presentation system, functionalizable polymer brushes on non-

titanium metals have been developed. Nonetheless, few of these surfaces have 

demonstrated enhanced osseointegration or bone formation. Moreover, there are currently 

no functionalizable brush systems on titanium in the literature that offer retained, long-

term stability in vivo, further limiting the ability to explore in detail the osseointegration 

capability of biomimetic ligand-inspired surface strategies.  

Summary 

 As we continue to accumulate greater understanding of how integrins regulate 

robust cell functions in distinct pathways and, in turn, how biointerfaces regulate 

integrin-mediated activities, new biomaterial surface modification strategies geared 

toward engineering integrin selectivity have been recently explored to take advantage of 

integrin function. Since integrins direct signaling pathways, cytoskeletal arrangements, 

and phenotype, and are major mediators of how cells detect and respond to their outside 

environment, it has become apparent that the better we control material-integrin 

interactions, the more directed cell and tissue response we might be able to achieve, 

particularly in orthopedic applications. These integrin-specific strategies utilize a multi-
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disciplinary approach, incorporating synthetic and organic chemistry, material science, 

knowledge of biological pathways, and genetic engineering, to design ligands 

functionalized on biointerfaces that direct selective integrin binding and activation.  

Although by no means inclusive, this chapter sought to highlight the major 

engineered ligand strategies and ligand presentation approaches used, and relative 

successes achieved, directed at this integrin-specific paradigm. Promising future 

approaches include targeting spatial, temporal, and multi-integrin components of integrin 

binding and signaling. These strategies include engineering multi-clustered integrin 

ligands, mixed integrin ligand surfaces geared to synergistically utilize multiple integrins 

for a direct cell effect, and alternatively, reversible ligand presentation schemes to control 

temporal activation.  
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CHAPTER 3 

INTEGRIN SPECIFICITY AND ENHANCED CELLULAR 

ACTIVITIES ASSOCIATED WITH SURFACES PRESENTING A 

RECOMBINANT FIBRONECTIN FRAGMENT COMPARED TO 

RGD SUPPORTS 

 

Introduction 

 Extracellular matrices (ECMs) play central roles in tissue morphogenesis, 

homeostasis, and repair by providing structural and signaling scaffolds that organize, 

coordinate, and regulate cellular activities [22,26].  Therefore, ECMs provide attractive 

characteristics worthy of mimicking to convey biofunctionality to synthetic materials in 

order to control cell functions, tissue structure, and regeneration [31].  In particular, 

biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including 

the arginine-glycine-aspartic (RGD) motif present in numerous ECM components, on a 

non-fouling support to target integrin adhesion receptors have demonstrated in vitro 

control of cell adhesion and differentiation, and, more importantly, enhancements in 

tissue healing responses in vivo, including bone formation [5,6,10], nerve regeneration 

[8,9],  and corneal tissue repair [7].  Nevertheless, these bio-inspired strategies are limited  

  

 

 
*Modified from 
T.A. Petrie, J.R. Capadona, C.D. Reyes, A.J. García. Biointerfaces Presenting a Recombinant 
Fibronectin Fragment Exhibit Integrin-Specificity and Enhanced Cellular Activities Compared to 
RGD Supports. Biomaterials 2006; 27(31):5459-70. 
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by low activity of the oligopeptides compared to the native ligand due to the absence of 

complementary or modulatory domains [13-15].  For example, binding of integrin α5β1 

requires both the PHSRN sequence in the 9th type III repeat and RGD motif in the 10th 

type III repeat of fibronectin (FN) [13].  Each domain independently contributes little to 

binding, but, in combination, they synergistically bind to α5β1 to provide stable adhesion 

[15,165].  Moreover, linear RGD peptides exhibit limited specificity among particular 

integrin receptors [28].  This limitation is particularly important as recent evidence 

suggests that integrin binding specificity regulates cell proliferation and differentiation 

[17,45,50]. 

To address limitations associated with short oligopeptides, conformation-

constrained peptides (e.g., cyclic RGD) [166], simple mixtures of adhesive motifs 

[73,117,120,167], and linear molecules incorporating several binding sequences are being 

pursued [122,168].  However, because of the exquisite dependence of receptor binding on 

the structural context of the ligand, the ability to reconstitute activities mimicking the 

native ligand via these methods is extremely challenging.  For instance, alterations in the 

nanoscale spacing, relative angle, and flanking sequences between the 9th and 10th type III 

repeats in FN result in significant losses in biological activity [92,113,114].  As an 

alternative strategy, we have focused on engineering high molecular weight ligands that 

recapitulate the primary, secondary, and tertiary structure of the native protein to 

reconstitute full biological activity as well as convey integrin binding specificity.  For 

example, we have synthesized a triple helical peptide incorporating the GFOGER 

(O=hydroxyproline) integrin binding sequence of type I collagen that promotes α2β1-

mediated cell adhesion, signaling, and differentiation [86,133].  In the case of FN, we 
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have engineered a recombinant fragment of FN encompassing the 7th-10th type III repeats 

(FNIII7-10) to present the PHSRN and RGD sequences in the correct structural orientation 

[124].  This recombinant fragment exhibited equivalent adhesive activities as plasma FN.  

It is important to note that, while all these surface engineering approaches have 

demonstrated integrin-mediated adhesive activities, the relative potency of these different 

ligands as biomaterial modification strategies remains poorly understood. 

The present analysis was undertaken to directly compare the cell adhesive 

activity, in terms of adhesion strength, integrin binding specificity, and signaling, of three 

adhesive ligands: short linear RGD, RGD-PHSRN peptide presenting the RGD and 

PHSRN motifs joined by a polyglycine sequence designed to mimic the spacing of the 

domains in FN, and recombinant FNIII7-10.  Adhesive ligands were tethered on model 

supports presenting anchoring groups within a non-fouling background in order to 

engineer well-defined, stable biointerfaces.  We demonstrate that biointerfaces presenting 

ligands reconstituting FN secondary structure display enhanced cell adhesion activity, 

signaling, and integrin binding specificity. 

Materials and Methods 

 Bacterial and mammalian cell culture reagents, Dulbecco’s phosphate buffered 

saline (DPBS) and human plasma fibronectin (pFN) were obtained from Invitrogen 

(Carlsbad, CA). Fetal bovine serum (FBS) was acquired from Hyclone (Logan, UT).  

RGD peptide (GRGDSPC) was purchased from BACHEM (San Diego, CA), and 

GRGDG13PHSRN peptide was synthesized by the Emory University Microchemical 

Facility (Atlanta, GA). Peptide tethering reagents, N-hydroxysuccinimide (NHS) and N-

Reagents, Antibodies, and Cells 
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(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), lysozyme and 

DNAse  were obtained from Sigma-Aldrich (St. Louis, MO).  DH5α and JM109 bacterial 

cells were purchased from Invitrogen and Promega (Madison, WI), respectively. The 

XA3 Pinpoint Vector biotinylation expression system and ECF substrate were obtained 

from Promega and Amersham Pharmacia Biotech (Piscataway, NJ), respectively.  

 Monoclonal HFN7.1 anti-human fibronectin antibody was obtained from the 

Developmental Studies Hybridoma Bank (Iowa City, IA). Rabbit antibodies against αV 

(AB1930) and α5 (AB1921) integrin subunits were purchased from Chemicon (Temecula, 

CA), and anti-vinculin antibody (V284) was acquired from Upstate Biotechnology (Lake 

Placid, NY). Function-perturbing hamster anti-rat β1 integrin (Ha2/5), anti-mouse β3 

(2C9.G2), and anti-BrdU antibodies were purchased from BD Pharmingen.  Alkaline 

phosphatase-conjugated donkey anti-mouse IgG (Jackson Immunoresearch, West Grove, 

PA) was used in ELISA.  AlexaFluor488-conjugated goat anti-mouse and anti-rabbit IgG 

antibodies, calcein-AM, and Hoechst 33258 dye were from Molecular Probes (Eugene, 

OR).  Monoclonal antibodies against total FAK (Upstate Biotechnology) and specific 

phosphotyrosine residues in FAK (pY397, pY576) (BioSource International, Camarillo, 

CA) were used for FAK analysis. Biotinylated anti-rabbit IgG (Jackson Immunoresearch) 

and alkaline phosphatase-conjugated anti-biotin antibodies (BN-34, Sigma-Aldrich) were 

used for Western blotting. 

MC3T3-E1 murine immature osteoblast-like cells (Riken Cell Bank, Hirosawa, 

Japan) were used for all experiments because of their expression of multiple integrins, 

including αvβ3 and α5β1. Cells were maintained at 37 ˚C in  α-MEM supplemented with 
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10% FBS and 1% penicillin-streptomycin and passaged every 2-3 days via standard 

culture techniques. 

A monobiotinylated FN fragment spanning the 7-10th type III repeats of FN, 

FNIII7-10, was produced using standard recombinant DNA techniques.  cDNA encoding 

for human FNIII7-10 was ligated into the XA3 plasmid (Pinpoint System, Promega). The 

resulting construct, encoding for FNIII7-10 with a biotin tagging sequence at the amine 

terminus, was amplified in DH5α cells, purified, and sequenced. JM109 bacterial cells 

were transformed the plasmid and streaked onto LB agar plates containing 100 μg/mL 

ampicillin and incubated overnight. Colonies were isolated and dynamically cultured in 

LB broth (100 μg/mL ampicillin ; 2 μm d-biotin). At 6 h, 100 µM IPTG was added to 

augment protein production. The cell broth was spun down at 8000g for 10 min at 4̊C, 

and the cell pellet was resuspended at 10 mL/g of cell paste in lysis buffer (50 mM Tris-

HCl pH 7.5, 50 mM NaCl, 5 % glycerol). Lysozyme (1 mg/mL) was added at 4̊ C to the 

cell suspension and stirred for 20 min, then sodium deoxycholate (1 mg/mL) for 5 

minutes, and finally DNAase I (40 μg/mL) for another 10 min. The lysate was 

centrifuged (10,000g) for 20 min. The protein supernatant was sterile-filtered, and 

purified by affinity chromatography using a 5 mL column of Ultralink Immobilized 

Monomeric Avidin (Pierce) connected to a gradient pump, UV monitor, and fraction 

collector (BioRad, Hercules, CA). Briefly, after sequential column washes with 

regeneration and elution buffers, the protein solution was allowed to bind to the column 

for 1 h at a 0.4 mL/min flow rate. After washing with DPBS, elution buffer (0.5 mg/mL 

d-biotin in DPBS) was flowed through (1 mL/min) and the eluted fractions monitored for 

Recombinant FNIII7-10  Production 
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protein. Protein fractions were filtered using 30 kDa Microcon centrifugal filter devices 

(Millipore, Bedford, MA) to remove d-biotin, and verified as > 98% pure FNIII7-10 by 

Western blotting and SDS-PAGE. Purified samples were flash frozen for storage (-80˚C). 

 Self-assembled monolayers (SAMs) on alkanethiols on gold were used to present 

well-defined, ordered surfaces with anchoring groups within a non-fouling background. 

Tri(ethylene glycol)-terminated alkanethiol (HS-(CH2)11-(OCH2CH2)3-OH; EG3) and 

carboxylic acid-terminated alkanethiol (HS-(CH2)11-(OCH2CH2)6-OCH2COOH; EG6-

COOH) were previously synthesized and characterized [149]. Gold-coated substrates 

were prepared by sequential deposition of titanium (100 Ǻ) and gold (200 Ǻ) films via an 

electron beam evaporator (Thermionics Laboratories, Hayward, CA, 2 x 10-6 Torr, 1 Ǻ/s) 

onto clean 6-well plate lids or glass coverslips. Mixed SAM surfaces were prepared on 

substrates by immersing in a 1.0 mM mixed solution of EG3/EG6-COOH thiols (4 h).  

Peptide ligands were tethered using standard peptide chemistry [169].  Briefly, following 

washing in ethanol and ultrapure H2O, SAMs were incubated in 2.0 mM EDC and 5.0 

mM NHS in 0.1 M 2-(N-morpho)-ethanesulfonic acid and 0.5 M NaCl (pH 6.0), and 

subsequently immersed in a 20 mM solution of 2-mercaptoethanol in deionized H2O. 

Adhesive ligands in PBS were then incubated on the activated supports for 30 min and 

unreacted surface NHS esters then quenched in 20 mM glycine.  Finally, surfaces were 

blocked in 1% heat-denatured bovine serum albumin (BSA) and then incubated overnight 

in DPBS to reduce non-specific protein adsorption [170]. 

Model Biomaterial Surfaces 
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 An ELISA was used to probe for the biological activity of the FNIII7-10 fragment 

compared to pFN.  FNIII7-10 or pFN was adsorbed onto either uncoated or Neutravidin-

coated (100 μg/mL) 96-well black U-well Dynex plates at various concentrations for 30 

min.  Following incubation in blocking buffer (0.25% BSA, 0.1 M EDTA, 2.5% Tween-

20, 0.00125% NaN3), HFN7.1 antibody (0.6 μg/mL in blocking buffer) was added for 1 h 

at 37 ˚C, and, after washing with blocking buffer, surfaces were incubated in alkaline 

phosphatase-conjugated anti-mouse IgG (0.6 μg/mL) for 1 h at 37 ˚C.  Washed surfaces 

were exposed to 4-methylumbelliferyl phosphate (25 mg/mL in 10 mM diethanolamine, 

pH 9.5). The resulting fluorescence was quantified using an HTS 7000 Plus plate reader 

(Perkin Elmer, Foster City, CA) at 360 nm excitation and 465 nm emission. 

Enzyme Linked Immunosorbent Assay (ELISA) and Surface Density Measurements 

Surface density measurements were obtained via surface plasmon resonance 

(SPR) using a Biacore X instrument (Biacore, Piscataway, NJ). Mixed SAM surfaces 

were prepared as described above on Au-coated SIA chips (Biacore), primed with sterile 

DPBS, and the baseline allowed to stabilize at a flow rate of 15 µl/min in DPBS.  Ligands 

were tethered by activating the surface with EDC/NHS for 10 min at a 10 µl/min flow 

rate, and ligand solutions were subsequently injected at a flow rate of 4 µl/min for 30 

min. Finally, surfaces were washed with 20 mM glycine at 10 µl/min and the signal 

allowed to stabilize for 2 min thereafter to measure tethered peptide levels.  To assay for 

relative degree of biotinylation, a solution of FNIII7-10 was flowed over a streptavidin 

chip at 20 µl/min for 4 min. Resonance units (R.U.) were converted to surface density 

values (10 R.U. = 1 ng/cm2). 

 



www.manaraa.com

 53 

 A modification of a centrifugation assay [171] was used to apply controlled 

detachment forces to cells adhering to engineered surfaces.  Multi-wells of engineered 

surfaces were created on gold-coated polystyrene plate lids using silicone gaskets (Grace 

Bio-Labs, Bend, OR).  Mixed SAMs were assembled and ligands tethered at varying 

densities. MC3T3-E1 cells were labeled with 4 mM calcein-AM, a membrane-permeable 

green fluorescent dye, in 2 mM dextrose-DPBS for 30 min and resuspended in α-MEM 

with 10% fetal bovine serum. Cells were seeded onto the surfaces at 200 cells/mm2, and 

allowed to attach for 1 h at 37 ˚C.  For blocking antibody experiments, cells were 

incubated in the presence of function-perturbing antibodies (10 µg/mL) for 10 min with 

gentle agitation prior to cell seeding. Before centrifugation, cell images were taken using 

a Nikon TE-300 fluorescence microscope and Spot RT digital camera. Wells were then 

filled completely with dextrose-PBS, sealed, inverted, and centrifuged for 5 min at a 

prescribed speed on a Beckman Allegra 6 centrifuge (GH 3.8 rotor) to apply normal 

detachment forces.  Media was then gently aspirated from the wells, and wells were 

refilled for post-spin image collection.  Post/pre-spin cell ratios were determined by 

image analysis, and this adhesive fraction was plotted against ligand surface density to 

obtain cell adhesion profiles. 

Centrifugation Cell Adhesion Assay 

Surfaces were prepared on either 6 well plate lids or 35 mm tissue culture dishes, 

and cells seeded at 75 cells/mm2 in serum-containing media for 4 h at 37 ˚C.  For integrin 

staining, a cross-linking/extraction biochemical method that selectively isolates bound 

Immunofluorescence Staining for Integrins and Focal Adhesions 
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integrins was employed [172].  Cells were washed, and 1.0 mM DTSSP (Pierce) was 

added for 15 min to cross-link ligated integrins.  After quenching with 50 mM Tris, 

uncrosslinked cellular components were extracted in 0.1% SDS supplemented with 

protease inhibitors (350 μg/mL PMSF). Samples were then blocked in 5% FBS for 1 h 

and incubated with integrin-specific antibodies for 1 h at 37 ˚C. Fluorochrome-labeled 

secondary antibodies were then incubated for 1 h at 37 ˚C.  Following washing, samples 

were mounted on slides with Gel/Mount mounting media (Biomeda, Foster City, CA). 

For staining of focal adhesions, cells were extracted in 0.5% Triton X-100 in ice-cold 

cytoskeleton buffer (50 mM NaCl, 3 mM MgCl2, 150 mM sucrose, 20 μg/mL aprotonin, 

1 μg/mL leupeptin, 1 mM PMSF, 50 mM Tris, pH 6.8) for 2 min and fixed in cold 3.7% 

formaldehyde in DPBS for 5 min.  Cultures were blocked, subsequently incubated in 

anti-vinculin monoclonal antibody (1:70 in 5% FBS) and fluorochrome-labeled 

secondary antibodies for 1 h, and samples mounted on slides. 

Cells were detached and gently agitated in serum-free suspension for 45 min to 

reduce background. Cells were then seeded at 200 cells/mm2 serum-free for 1 h. Cells 

were lysed in RIA buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 150 

mM NaCl, 150 mM Tris-HCl (pH 7.2), 350 μg/mL PMSF, 10 μg/mL leupeptin, and 10 

μg/mL aprotonin) for 20 min on ice.  Samples were pipetted up and down 20 times and 

centrifuged at 8000g for 10 min to shear DNA and isolate protein contents. Total protein 

was quantified using micro-BCA (Pierce). Equal amounts of protein were boiled for 10 

min in Laemmli buffer and separated by SDS-PAGE on a 7% gel, transferred to 

nitrocellulose membranes, and blocked with Blotto (5% nonfat dry milk, 0.2% Tween 20) 

FAK Phosphorylation Assay 
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overnight at 4˚C.  Membranes were gently rocked in antibodies against FAK and specific 

phosphorylated FAK tyrosine residues (anti-to tal FAK at 1  μg/mL, anti-FAK pY397 at 

0.35 μg/mL, anti-FAK pY576 at 0.5 μg/mL) for 1 h. After washing with TBS-Tween (20 

mM Tris HCl pH 7.6, 137 mM NaCl, 0.1% Tween-20), secondary antibody (biotin-

conjugated anti-rabbit IgG; 1:20,000) was added for 1 h, followed by alkaline 

phosphatase-conjugated anti-biotin antibody (1:10,000) in Blotto. Immunoreactivity was 

assessed by ECF fluorescent substrate. FAK bands were visualized by a Fuji Image 

Analyzer and phosphorylation levels normalized to total FAK. 

 Cells were seeded on surfaces in 10% serum for 16 h, and BrdU (3.1 μg/mL) was 

added for the last 4 h. After washing with DPBS, samples were fixed in 70% cold ethanol 

for 10 min, denatured in 4 M HCl for 20 min, neutralized in 50 mM NaCl in 100 mM 

Tris-HCl (pH 7.4), washed, and blocked with 5% FBS + 1% heat-denatured BSA. 

Cultures were incubated in anti-BrdU antibody (1:1000) and AlexaFluor488-conjugated 

anti-mouse IgG (1:200). Nuclei were counter-stained with Hoechst dye (1:10,000). 

Fluorescent images were used to quantify the number of cells positive for BrdU relative 

to total cell nuclei using an in-house image analysis routine. Ten representative fields 

were analyzed per well with multiple wells for each surface condition. 

Cell Proliferation Rate 

Data represent characteristic results from a particular experimental run, although 

at least three independent runs were conducted.  Data are reported as mean ± standard 

error.  Results were analyzed by one-way ANOVA using SYSTAT 11.0 (SPSS).  If 

Statistics 
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treatment level differences were determined significant, pair-wise comparisons were 

performed using a Tukey post-hoc test.  A 95% confidence level was considered 

significant. 

Results 

We previously developed a recombinant FN fragment (FNIII7-10), presenting both 

the RGD and the synergy PHSRN domain in the correct native structure and orientation, 

in order to target the α5β1 integrin 124].  Recombinant DNA technology allows for 

production of FN-mimetic ligands that reconstitute the secondary structure of the native 

ligand and affords the ability to engineer enhanced or new functionality.  In the present 

work, we engineered a monobiotinylated FNIII7-10 by encoding a biotinylation sequence 

at the amine terminus of the protein. The crystal structure for FNIII7-10 is presented 

(Figure 3.1 A) with relevant residues highlighted and a schematic biotin tag added [173].  

This fibronectin fragment represents an enhanced version of the previously described 

fragment with a single biotin tag introduced at a specific site [124].   In addition to 

providing a simple system to generate large quantities of purified protein via affinity 

chromatography (2-10 mg from 1 L culture, >98% purity, Figure 3.1 B), this strategy 

incorporates a well-defined tag for tethering onto avidin supports as well as a tracking 

marker for future in vitro and in vivo studies.   

Recombinant FNIII77--1100    has Equivalent Biological Activity as Plasma FN 
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Figure 3.1. Monobiotinylated FNIII7-10. (a) Crystal structure of FNIII7-10 displaying 
both the RGD and PHSRN binding site in the native structural orientation (PDB file 
1FNF).  Also shown are lysine residues available for tethering and single biotin tag 
encoded at the amine terminus of the 7th type III repeat. (b) Purification of FNIII7-10 from 
bacterial cell lysate using avidin-affinity chromatography. Ponceau stain showing lysate, 
wash, column-bound, and post-wash pooled protein fractions.  
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The biological activity of FNIII7-10 was evaluated by ELISA using the HFN7.1 

monoclonal antibody which is specific for the central cell-binding domain in the 9th to 

10th type III repeats of FN [174].  Furthermore, we have shown that HFN7.1 binding 

efficiency correlates closely with the binding affinity of the integrin α5β1 for FN [65].  

For passively adsorbed ligands, HFN7.1 binding increased with protein coating 

concentration for both pFN and FNIII7-10, and there were no significant differences in 

either the hyperbolic shape or magnitude for the binding curves (see Figure 3.2 A), 

indicating equivalent functional activity between monobiotinylated FNIII7-10 and pFN. 

To demonstrate biotinylation of the fragment, both ELISA on Neutravidin-coated 

polystyrene and surface plasmon resonance (SPR) on streptavidin-coated gold chips were 

performed (see Figure 3.2 B).  High levels of HFN7.1 antibody bound to FNIII7-10 

incubated on Neutravidin-coated surfaces, whereas background levels of HFN7.1 binding 

were observed on Neutravidin supports exposed to pFN (no biotin tag).  This result is 

expected since only biotinylated ligand (FNIII7-10) would be tethered on Neutravidin. 

Similarly, SPR measurements revealed high levels of immobilized FNIII7-10 on 

strepavidin-coated chips. 

 Mixed alkanethiol SAMs were used as model surfaces presenting well-defined 

anchoring groups (-COOH) for controlled tethering of ligands in a protein adsorption-

resistant background (tri(ethylene glycol groups): EG3).  Peptides were tethered via free 

amines using EDC/NHS coupling chemistry [169,170].  The percentage of anchoring 

groups within the SAM is expected to be an important design parameter; densities of 

anchoring groups must be optimized to afford for a wide range of ligand densities while 

FNIII7-10 Displays Enhanced Cell Adhesive Activity Compared to RGD Peptides 
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preventing non-specific ligand adsorption.  We examined FNIII7-10 tethering/adsorption 

onto activated/unactivated SAMs with EG6-COOH:EG3 solution ratios ranging from 

0.0001 to 0.1 via ELISA (data not shown).  We determined that an EG6-COOH:EG3 

solution ratio of 0.02 yielded the highest tethered ligand density while maintaining 

background levels of non-specific adsorption.  This model system presents a well-defined 

surface with a single adhesive ligand that allows direct functional comparison on a molar 

basis among different adhesive ligands.  

Three adhesive ligands were examined: (i) RGD peptide (GRGDSPC); (ii) RGD-

PHSRN peptide (GRGDG13PHSRN) presenting the RGD and PHSRN motifs joined by a 

polyglycine sequence designed to mimic the spacing of the domains in FN but not 

interfere with the adhesion characteristics of the two linked sequences [24]; and (iii) 

FNIII7-10.  Quantification of ligand tethering onto SAMs was conducted via SPR.  

Tethered ligand surface density increased hyperbolically with coating concentration, 

reaching saturation levels at higher concentrations (Figure  3.3 A). The measured surface 

densities are in good agreement with previous results [169,170], and are below the 

theoretical limits based on the calculated surface density of the EG6-COOH thiols. 

Although these surfaces were prepared in situ in the SPR, as opposed to the surfaces 

prepared on the benchtop used for the cell culture work, ELISA-based measurements 

indicated no significant differences in tethered profile shape or relative densities (data not 

shown), supporting the validity of these quantitative density values. 
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Figure 3.2. Monobiotinlylated FNIII7-10 exhibits equivalent biological activity as 
pFN. (a) HFN 7.1 antibody binding follows hyperbolic profile vs. protein coating 
concentration for passively adsorbed pFN and FNIII7-10.  In contrast, antibody binding to 
FNIII7-10 is 10-fold higher than pFN on Neutravidin-coated surfaces. (b) SPR 
measurements on streptavidin-coated chips highlight successful biotinylation of FNIII7-10. 
SPR steps were: (A) 4 min protein injection, 10 μL/min, 10 μg/mL, (B) 1 minute PBS 
wash, (C) 2 min 0.01% SDS wash, (D) 2 min PBS wash. Arrows indicate immobilized 
protein density. 
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These data indicate that control over tethered peptide density can be achieved by 

varying coating concentration accordingly. Although the tethering curves exhibited 

similar hyperbolic profiles, RGD and RGD-PHSRN tethered at >10-fold higher molar 

densities than FNIII7-10 (see Figure 3.3 A). Tethering efficiencies for RGD and RGD-

PHSRN were identical.  This result is not unexpected given the significant differences in 

size as well as availability of anchoring groups on FNIII7-10 compared to the linear RGD 

peptides.  Tethered ligands were biologically active as determined by cell spreading.  At 

saturated surface densities, all engineered surfaces exhibited equivalent levels of cell 

spreading, while very few cells attached to EG3 or unactivated EG6-COOH: EG3 surfaces 

(see Figure 3.3 B). 

To further characterize the adhesive activities of these engineered biointerfaces, 

we measured the adhesion strength of MC3T3-E1 cells using a centrifugation assay that 

applies controlled detachment forces to adherent cells [172]. For all surfaces, the fraction 

of adherent cells increased sigmoidally with adhesive ligand surface density (see Figure 

3.4), and adhesion strength was characterized as the ligand density required for half-

maximal adhesion (ADH50). Adhesion strength is inversely related to ADH50, as a shift of 

the curve left (decreasing ADH50) represents an increase in adhesion strength since less 

ligand is needed for cell adhesion. Cell adhesion profiles for RGD- and RGD-PHSRN-

tethered surfaces were almost identical, and ADH50 values were 2300 and 1950 fmol/cm2, 

respectively, indicating similar adhesive activity for these two peptides (see Figure 3.4). 

FNIII7-10-tethered surfaces displayed a pronounced leftward shifted adhesion profile 

compared to the other two peptide tethered-surfaces, reflected in the relatively low 

ADH50 value of 70 fmol/cm2 (see Figure 3.4).  
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Figure 3.3. Bioadhesive ligand tethering to mixed SAMs. (a) Surface density of 
FNIII7-10, RGD, and RGD-PHSRN tethered to 2% EG6-COOH:EG3 SAM surfaces as a 
function of coating concentration as determined by SPR (mean ± standard deviation; 
hyperbolic curve fit: RGD, R2 = 0.95; RGD-PHSRN, R2 =0.95, FNIII7-10, R2 = 0.97); (b) 
Images of calcein-labeled MC3T3-E1 cells adhering to peptide-tethered SAM surfaces 
for 1 h. Overall spreading and adhesion were similar on each peptide-tethered surface 
whereas few cells attached to EG3-terminated controls (Scale bars = 20 μm).  
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Figure 3.4. MC3T3-E1 cell adhesion strength to SAMs presenting controlled 
densities of bioadhesive ligands (1 h adhesion, centrifugation at 57 g for 5 min). FNIII7-

10 cell adhesion strength profile is shifted upward and leftward, indicating an increase in 
adhesion strength over RGD and RGD-PHSRN-tethered surfaces (mean ± standard error, 
4 independent experiments with n = 5; sigmoidal curve fits: RGD, R2 = 0.80; RGD-
PHSRN, R2 =0.79; FNIII7-10, R2 = 0.96). 
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These data indicate that the FNIII7-10-tethered surface displays higher cell adhesive 

activity compared to RGD or RGD-PHSRN-tethered surfaces. 

 We then examined whether these different adhesive surfaces supported cell 

adhesion by binding different integrin receptors.  Function-perturbing antibodies directed 

against different integrin subunits were used to block adhesion to the engineered 

interfaces.  Since integrins α5β1 and αvβ3 represent the dominant adhesion receptors for 

FN in MC3T3-E1 cells [17], we analyzed the contributions of these receptors to adhesion 

strength on the peptide-functionalized SAMs.  Surfaces were tethered with maximum 

density of ligand, and the relative cell adhesion was normalized to unblocked controls. 

Blocking antibodies directed against α5β1 integrin reduced adhesion to background levels 

(EG3) for the FNIII7-10-tethered surface, but only slightly reduced adhesion on the RGD 

and RGD-PHSRN surfaces (see Figure 3.5). In contrast, antibodies against the β3 

integrin subunit did not alter adhesion significantly for FNIII7-10-tethered surfaces, but 

reduced adhesion over 75% for both the RGD and RGD-PHSRN surfaces (see Figure 

3.5).  These results demonstrate that the FNIII7-10-tethered surface primarily supports 

α5β1-mediated adhesion, whereas the RGD- and RGD-PHSRN-functionalized surfaces 

promote αvβ3-mediated cell adhesion.   

FNIII7-10  Surfaces Exhibit Different Integrin Specificity than RGD Supports 
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Figure 3.5. Surfaces presenting FNIII7-10 display integrin binding specificity 
compared to RGD supports.  Blocking antibodies against integrin α5β1 completely 
inhibited cell adhesion to FNIII7-10 surfaces (§ vs. control, p<0.0009) and, to a much 
lesser extent, the RGD surface (* vs. RGD control, p<0.01).  In contrast, blocking β3 
blocked cell adhesion only to the RGD (* vs. control, p<0.0009) and RGD-PHSRN (δ vs. 
control, p<0.0009) surfaces. Adhesion to peptide-incubated EG3 control surfaces was 
minimal. Results are expressed as percent inhibition compared to unblocked cell control 
(mean ± standard error, 3 independent experiments with n = 8). 
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Since MC3T3-E1 cells assemble robust focal adhesions containing clustered 

integrins and intracellular structural and signaling proteins, we examined integrin binding 

and focal adhesion assembly on the engineered interfaces by staining for different 

integrin subunits and vinculin, which localizes to focal adhesions [175].  MC3T3-E1 cells 

were allowed to adhere on each saturated ligand-functionalized support for 2 h and 

integrin binding was evaluated via a crosslinking/extraction and immunostaining protocol 

which isolates integrins ligated to the ligand [172].  Cells adhering to FNIII7-10-tethered 

surfaces displayed robust, well-defined adhesive structures containing α5β1 integrins but 

minimal αvβ3 binding (see Figure 3.6).  Cells on RGD-tethered surfaces exhibited 

clustering of αvβ3 and little staining for α5β1 (see Figure 3.6).  We note that the 

crosslinking and extraction technique relies in coupling free amines on both the receptor 

and ligand. Since the tethered RGD has no free amine, we attribute the αvβ3 staining in 

the RGD surfaces to focal adhesions that were not completely extracted. These results are 

further supported by the integrin antibody blocking adhesion data. Both surfaces 

assembled focal adhesions containing vinculin (see Figure 3.6).  These results further 

demonstrate that surfaces presenting FNIII7-10 primarily support α5β1-mediated adhesion, 

while RGD-functionalized SAMs mediate adhesion via αvβ3.   
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Figure 3.6. Immunofluorescence staining for bound integrins and vinculin in 
MC3T3-E1 cells seeded for 4 h on FNIII7-10 and RGD-tethered SAMs. Cells on 
FNIII7-10 surfaces display intense clusters of α5β1 integrin and minimal αv staining, while 
RGD-tethered surfaces exhibit peripheral clusters of αv and sparse α5β1 staining. Vinculin 
recruitment to focal adhesions was observed on both surfaces, although in more 
abundance and intensity on FNIII7-10 surfaces compared to RGD (Scale bars = 10 μm). 
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 We next determined whether these bioadhesive interfaces modulated intracellular 

signaling and high-order cell activities.  We analyzed levels of focal adhesion kinase 

(FAK) phosphorylation as a marker of integrin-mediated signaling.  FAK localizes to 

focal adhesions and activates various signaling cascades regulating cell survival, 

proliferation and differentiation [176].  We probed for phosphorylation of important 

tyrosine residues using site-specific antibodies in Western blotting.  Phosphorylation of 

tyrosine-397, the autophosphorylation site on FAK which also binds to the p85 subunit of 

PI3-kinase, was increased almost threefold on the FNIII7-10 surface compared to the 

RGD-tethered surface at maximum peptide densities (Figure 3.7).  Similarly, 

phosphorylation of tyrosine-576, located in the FAK catalytic loop and responsible for 

maximal FAK kinase activity, was significantly higher on the FNIII7-10-tethered surface 

compared to the RGD-functionalized support (Figure 3.7).  Tyrosine-861, a major Src 

phosphorylation site, was phosphorylated at similar levels among both peptide-tethered 

surfaces (data not shown).  These results demonstrate differential activation of FAK on 

these engineered interfaces, suggesting that different integrins trigger different signaling 

pathways on biomimetic surfaces. 

FNIII7-10  Interfaces Trigger Enhanced Signaling and Cell Proliferation  

 Because integrin-mediated activation of FAK has been linked to upregulation of  

cell proliferation [178,179],  we investigated whether adhesion to the different 

biointerfaces would modulate MC3T3-E1 proliferation. The proliferation rate of cells 

seeded for 16 h on each ligand-tethered surface was probed by BrdU incorporation.  
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Figure 3.7. Phosphorylation of site-specific tyrosine residues of focal adhesion kinase 
(FAK) in MC3T3-E1 seeded cells on saturated density RGD and FNIII7-10-tethered 
surfaces (3000 and 150 fmol/cm2, respectively). (a) Representative Western blots for 
phosphorylated Tyr-397 and Tyr-576 residues and total FAK for cells seeded for 1 h on 
peptide-tethered SAMs. (b) Quantification of Western blot band intensity demonstrating 
higher phosphorylation of Tyr-397 (p<0.006) and Tyr-576 (p<0.001) on FNIII7-10 over 
RGD-tethered surfaces (Mean ± standard error, 3 separate experiments in duplicate). 
Intensities for phosphorylated FAK were normalized to total FAK. 
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Figure 3.8. Proliferation rate (% BrdU+ cells, mean ± standard error) for MC3T3-
E1 cells cultured for 20 h on RGD and FNIII7-10-tethered surfaces for two different 
peptide densities.  BrdU was added at 16 h adhesion for 4 h and percentage of BrdU+ 
cells was determined via microscopy.  FNIII7-10-tethered surfaces display higher 
proliferation rate compared to RGD supports for both saturated (150 and 3000 fmol/cm2; 
p<0.01) and sub-saturated (45 and 1150 fmol/cm2; p<0.001) surface densities. 
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Cells seeded on FNIII7-10 surfaces displayed a two-fold increase in cell proliferation rate  

compared to RGD-tethered surfaces at low and high relative peptide surface densities 

(Figure 3.8). 

Discussion 

We generated well-defined biointerfaces presenting different adhesive ligands to 

directly compare their biological activities in terms of cell adhesion strength, integrin 

binding, and signaling.  Mixed SAMs of COOH-EG6- and EG3-terminated alkanethiols 

were optimized to engineer robust supports that present anchoring groups for ligand 

tethering within a non-fouling, protein adsorption-resistant background.  Controlled 

bioadhesive interfaces were generated by tethering adhesive ligands via standard 

EDC/NHS chemistry, and the resulting tethered surface density could be easily 

modulated by altering the ligand concentration in solution during tethering.  The ability to 

precisely control tethered ligand densities is an important design parameter as cell 

adhesion, focal adhesion assembly, spreading and migration, neurite extension, and cell 

differentiation exhibit peptide density-dependent effects [73,96,152,179,180-182].  We 

examined the adhesive activities of three FN-mimetic ligands of increasing complexity: 

(i) linear RGD peptide presenting the minimal cell adhesive motif of FN; (ii) RGD-

PHSRN peptide presenting the RGD and PHSRN motifs joined by a polyglycine 

sequence designed to mimic the spacing of these domains in FN, and (iii) recombinant 

FNIII7-10 reconstituting the primary and secondary structure of the central cell binding 

domain of FN.  Since we have previously shown that cyclic RGD peptide confers no 

additional integrin-specific mechanical adhesion strength or integrin specificity for α5β1, 

linear RGD peptide was used in this study. Furthermore, current biomimetic surfaces 

mainly focus on linear RGD, making the use of linear RGD in this study more relevant to 

current strategies. On a molar basis, biointerfaces presenting FNIII7-10 exhibited 

significantly higher adhesion strength, FAK activation, and cell proliferation rate than 
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supports presenting RGD or RGD-PHSRN.  Moreover, FNIII7-10-functionalized surfaces 

displayed specificity for α5β1 integrin, while cell adhesion to SAMs presenting RGD or 

RGD-PHSRN was primarily mediated by αvβ3 integrin.  These results are significant to 

the rational engineering of bioactive materials that promote cell adhesion and function.  

Importantly, recent evidence indicates that integrin binding specificity, particularly 

α5β1 vs. αvβ3, regulates osteoblast and myoblast differentiation in response to biomaterial 

surface chemistry [17,18].  Therefore, biomolecular engineering strategies that convey 

integrin binding specificity to bio-inspired materials may provide a facile route to elicit 

desired cellular responses.  Finally, DNA recombinant technology provides a versatile 

platform to engineer bioactive ligands mimicking the structure of the native ligand as 

well as a system to incorporate new functionality.  For example, Tirrell and colleagues 

have synthesized artificial proteins presenting different adhesive sites from FN as a 

bioartificial matrix [94,117,183].  This technology may provide a time and cost efficient 

alternative to chemical synthesis methods to engineer complex biologically active peptide 

ligands. 

The improved adhesive activities of FNIII7-10-engineered surfaces compared to 

RGD- and RGD-PHSRN-functionalized supports can be attributed to enhanced binding 

of integrin α5β1.  Simple RGD linear peptides, even those co-presenting the PHSRN 

motif in the appropriate spacing as in the native FN molecule, cannot support binding of 

integrin α5β1, but instead promote binding of αvβ3. We attribute the integrin specificity 

for α5β1 of FNIII7-10-tethered surfaces to the presentation of PHSRN and RGD in the 

same structural context as the native FN ligand, while the RGD peptides either lack the 

PHSRN site (RGD peptide) or present it in a suboptimal orientation (RGD-PHSRN).  

This result underscores the exquisite sensitivity of the integrin α5β1-FN interaction on the 

specific molecular structure of the ligand.  Notably, in addition to presenting PHSRN and 

RGD in a specific structural conformation, FNIII7-10 has the RGD motif constrained to a 
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loop extending from the backbone of the molecule [173].  While this RGD constrained 

conformation probably improves receptor binding affinity, we cannot attribute the 

improved specificity of FNIII7-10 for α5β1 integrin to the constrained RGD loop.  We 

previously showed using FN mutants that the PHSRN site is absolutely required for α5β1  

integrin binding, and this receptor cannot bind the RGD loop by itself [84]. The α5β1-

mediated enhancements in adhesion strength, FAK activation, and cell proliferation rate 

on FNIII7-10-engineered interfaces may reflect increases in the number of integrin-ligand 

bonds and/or α5β1-specific activities.   

 Surfaces presenting RGD-PHSRN exhibited identical adhesive activities as RGD-

functionalized supports, suggesting that the PHSRN motif in this peptide provides no 

additional effects.  This result contrasts a previous study from Anseth et al. reporting 

enhanced activities of RGD-PHSRN compared to RGD when presented within a 

hydrogel [122], although no antibody blocking experiments were performed.  Possible 

explanations for this discrepancy include differences in peptide presentation/accessibility 

and cell type-specific activities.  Furthermore, previous analyses with simple RGD and 

PHSRN peptide mixtures also documented increases in cell adhesion compared to pure 

RGD [117,120,167].  It is important to point out that two of these studies employed 

peptide-amphiphile supports which exhibit significant peptide mobility.  Reconfiguration 

of the interface may allow for rearrangement of ligands to approximate the structural 

context in FN and “fit” the integrin.  Moreover, these studies used extremely high surface 

densities of peptides (compared to physiological densities of FN) that could give rise to 

non-physiological effects.  Comprehensive analyses, including antibody blocking, 

varying peptide surface densities, and signaling evaluations, are necessary to fully 

establish the adhesive activities of these engineered surfaces. 

This study provides an experimental platform to engineer integrin-specific 

biointerfaces to manipulate cell and host responses to biotechnological/biomedical 

supports and implanted devices.  We hypothesize that integrin binding specificity 
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(α5β1 vs. αvβ3) will regulate cellular activities, including cell cycle progression and 

expression of differentiated phenotypes, as well as tissue healing responses.  This 

approach of conveying integrin binding specificity may provide a robust biomolecular 

strategy to elicit directed biological responses. In addition, integrin-specific biomimetic 

surfaces utilizing recombinant peptides of matrix molecules, such as FNIII7-10, often 

exhibit lower immunogenicity and higher stability than the whole proteins, as well as lack 

binding sites for other ligands which may impede in a more directed cellular response. In 

particular, this surface strategy may present a clinically relevant approach to improving 

bone formation and integration in biomedical devices and tissue-engineered scaffolds. 

Summary 

Using a model system to present controlled ligand densities within a non-fouling 

background, we demonstrate that biointerfaces functionalized with the FNIII7-10 

recombinant fragment presenting the RGD and PHSRN motifs in the correct structural 

context exhibited significantly higher adhesion strength, FAK activation, and cell 

proliferation rate than supports presenting RGD or RGD-PHSRN oligopeptides.  

Moreover, FNIII7-10-functionalized surfaces displayed specificity for α5β1 integrin, while 

cell adhesion to SAMs presenting RGD or RGD-PHSRN was primarily mediated by 

αvβ3 integrin.  These results are significant to the rational engineering of bioactive 

materials that promote cell adhesion and function. 
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CHAPTER 4 

THE EFFECT OF INTEGRIN-SPECIFIC BIOACTIVE COATINGS ON TISSUE 

HEALING AND IMPLANT OSSEOINTEGRATION 

 

Introduction 

Over 713,000 joint arthroplasties, mostly hip and knee procedures in arthritic 

patients, at a cost of $15 billion were performed in the U.S. in 2000 [1].  Even though 

artificial joint replacements can function properly for a decade, the long-term success of 

arthroplasties is limited by implant loosening and wear, often resulting in patient 

discomfort and pain and requiring revision surgery [184].  More importantly, the lifetime 

of these implants must increase as the number of younger patients needing joint 

replacements continues to steadily increase [2].  Considerable efforts have focused on 

implant surface technologies, particularly macro- and micro-porous coatings for bone 

ingrowth and bone-bonding ceramic coatings, to promote early integration into the 

surrounding bone [3].  However, inadequate cell-material interactions leading to slow 

rates of osseointegration and poor mechanical properties currently restrict these 

approaches [4].  

Cell-biomaterial interactions govern host responses to implanted devices, 

integration of biomedical prostheses and tissue-engineered constructs, and the  

 

*Modified from 
T.A. Petrie, J. Raynor, K.L. Burns, D.M. Collard, A.J. García, Integrin-Specific Bioactive Coatings 
Enhance Tissue Healing and Implant Osseointegration. Biomaterials 2008; 29:2849-57. 
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performance of biotechnological supports [31,32,185].  In most instances, cells recognize 

and adhere via integrin receptors to biomacromolecules that adsorb non-specifically onto 

synthetic surfaces [186].  Integrins are a widely expressed family of heterodimeric (αβ) 

transmembrane receptors that provide anchorage forces and trigger signals regulating cell 

survival, proliferation, and differentiation, often overlapping with other receptor 

pathways [16].  For example, αv-containing integrins are essential for steroid hormone 

and growth factor induction of osteoblast differentiation [80,187]. Because of the central 

roles of integrin-mediated adhesion in tissue formation, maintenance, and repair, recent 

bio-inspired biomaterial strategies have focused on presenting integrin ligands such as 

extracellular matrix proteins and short bioadhesive motifs derived from these components 

on implant surfaces [81].  The most common approach relies on the presentation of the 

arginine-glycine-aspartic acid (RGD) adhesive sequence derived from FN.  While 

synthetic and natural materials functionalized with RGD oligopeptides support integrin-

mediated adhesion, proliferation, and differentiation in vitro, mounting evidence indicates 

that this biomaterial surface engineering strategy does not enhance biomedical implant 

integration or function in rigorous animal models [12,104,105].  Based on previous in 

vitro work demonstrating that integrin binding specificity (α5β1 vs. αVβ3) regulates 

osteoblastic differentiation [17], we hypothesized that the marginal healing responses to 

RGD-functionalized implants arise from the lack of selectivity of this ligand for specific 

integrins.  In the present study, we used a novel polymer brush system to analyze 

mechanistically the effect on in vitro osteogenic stromal cell differentiation and bone 

tissue healing for clinical-grade titanium functionalized with ligands with varying 

specificity for target integrin receptors. We demonstrate that biomaterial coatings specific 
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for integrin adhesion receptors regulate osteoblastic differentiation of marrow-derived 

progenitor cells and enhance bone tissue healing and the functional integration of 

clinically-relevant biomedical implants. 

Materials and Methods 

 Polymeric brushes, which are arrays of polymer chains attached at one end to a 

surface, on titanium substrates were synthesized by surface-initiated atom-transfer radical 

polymerization of poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) [128].  

Titanium-coated glass slides or custom-made commercially pure titanium implants were 

incubated in a 1:1 solution of chlorodimethyl(11-(2-bromo-2-

methylpropionyloxy)undecyl)silane and dodecyldimethylchlorosilane in anhydrous 

hexane. Poly(OEGMA) brushes were polymerized by immersion into a solution of 

OEGMA (28.3 mmol), CuBr (1.6 mmol), 2,2’-dipyridyl (2.8 mmol) in a 1:4 mixture of 

MeOH and H2O for 4 h. The resulting polymer brushes were 135 Å as determined by 

ellipsometry.  For ligand tethering, brushes were first incubated in 4-nitrophenyl 

chloroformate (1.4 mmol in THF), which “activates” the brushes for subsequent ligand 

tethering by replacing a portion of the hydroxyl groups situated at the end of the polymer 

brushes with nitrophenyl chloroformate (NPC). The “activated” NPC-terminated brushes 

are then susceptible to attack and replacement by primary amine groups on bioadhesive 

peptides or proteins. Likewise, the activated brushes are then incubated in FNIII7-10 or 

RGD in PBS for 30 min to allow ligand tethering, and residual activated NPC sites were 

quenched in 20 mM glycine in PBS. FNIII7-10 was expressed in E. coli and purified [108], 

Poly(OEGMA) Polymer Brush Preparation and Peptide Tethering on Titanium 
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and the linear RGD oligopeptide (GRGDSPC) was purchased from BACHEM.  Brush 

synthesis and functionalization reactions were verified by XPS (X-ray spectroscopy) and 

FTIR (Fourier Transform infrared spectroscopy).  Ligand surface density measurements 

were obtained via surface plasmon resonance using a Biacore X instrument.. Antibody-

based bioactivity assay was performed by ELISA using HFN7.1 antibody.  

 Rat bone marrow stromal cells were isolated from male Sprague-Dawley rats and 

cultured under IACUC-approved procedures [49].  Cell adhesion to engineered surfaces 

under serum-free conditions was measured at 1 h at 37 °C using a centrifugation assay 

[133]. For integrin blocking, cells (passage 3 or less) were incubated in blocking 

antibodies (anti-rat CD49e [HMα5-1] or anti-rat CD51, BD Biosciences) for 20 min prior 

to cell seeding.  Integrin binding was quantified using a crosslinking/extraction/reversal 

procedure using DTSSP crosslinker [172].  For FAK activation assays, cells were plated 

in the presence or absence of integrin-blocking antibodies on engineered substrates for 2 

h at 37 °C under serum-free conditions.  Cells were lysed in RIPA buffer (1% Triton X-

100, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 150 mM Tris-HCl (pH 7.2), 

350 μg/mL PMSF, 10 μg/mL leupeptin, and 10 μg/mL aprotonin), equal amounts of total 

protein loaded on 8% SDS-PAGE gels, separated by SDS-PAGE, and transferred to 

nitrocellulose membranes.  FAK activation was assessed by subsequent western blotting 

using antibodies specific for FAK phosphotyrosines and normalized to total FAK. 

Cell Adhesion and Integrin Binding Assays 
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Rat bone marrow stromal cells at low passage (3 or less) were seeded on 

appropriate surfaces at 100 cells/mm2 in growth medium. After 24 h, cultures were 

maintained in osteogenic medium consisting of growth medium supplemented with 50 

μg/mL Ŀ-ascorbic acid and 3 mM sodium ß-glycerophosphate. Total RNA was isolated at 

7 days after initial cell seeding, and gene expression was analyzed by RT-PCR using 

osteoblast-specific primers and normalized to a standard curve [49].  Alkaline 

phosphatase activity was quantified at 7 days after cell seeding using a fluorescence-

based enzymatic assay [49].  Calcium content was determined using a commercial 

arsenazo III-containing Calcium Reagent kit (Diagnostic Services Ltd).  

Osteogenic Differentiation Assays 

Implantations into the tibiae of mature Sprague-Dawley male rats were conducted 

in accordance with an IACUC-approved protocol as described previously [49].  Animals 

were euthanized after 4 weeks, and proximal tibiae were fixed in neutral buffered 

formalin for histology or recovered without fixation and maintained in PBS-moistened 

gauze for immediate mechanical testing.  For histology, fixed tibiae were embedded in 

poly(methyl methacrylate), ground (50-80 µm), and stained with Sanderson’s Rapid 

Bone Stain™ and a van Gieson counter stain. This stained mineralized bone (yellow-

orange) and soft tissue and osteoid (blue-green). Bone implant contact was measured as 

the percentage of implant’s circumference that was in direct contact with bone tissue.  

Implant mechanical fixation to the bone was measured with a pull-out force test using an 

EnduraTEC Bose ELF 3200 biomechanical testing apparatus [49]. Tests were performed 

Implantation Procedure and Analysis 
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at a constant force rate of 0.2 N/sec parallel to the long axis of the implant. The pull-out 

force was the maximum load achieved before failure. 

 Data are reported as mean ± standard error.  Results were analyzed by one-way 

ANOVA using SYSTAT 8.0 (SPSS).  If treatment level differences were determined to 

be significant, pair-wise comparisons were performed using a Tukey post-hoc test.  A 

95% confidence level was considered significant. 

Statistics 

Results 

In order to develop a robust coating for tunable presentation of bioactive factors 

on a clinically-relevant material, we designed and synthesized a polymer brush system 

incorporating a physiologically stable, non-fouling (resists protein adsorption) 

oligo(ethylene glycol)-substituted polymer brushes on clinical-grade titanium supports 

and functionalized the polymer coating with controlled densities of bioadhesive ligands.   

Bio-Functionalized Implant Coatings to Convey Integrin Binding Specificity 

We employed a “grafting from” approach based on surface-initiated atom-transfer 

radical polymerization (SI-ATRP) of poly(OEGMA) brushes on titanium [128] (Figure 

4.1 A).  Briefly, a 1:1 mixed self-assembled monolayer (SAM) of bromine-terminated 

initiator and unreactive, methyl-terminated co-adsorbate was formed on a clean titanium 

surface.  The terminal bromine served as the radical initiator for the subsequent SI-ATRP 

of oligo(ethylene glycol) monomer to form thick, dense poly(OEGMA) brushes (Figure 

4.1 B-1,2).  The hydroxyl groups at the termini of the oligo(ethylene glycol) side chains 

were converted to 4-nitrophenyl carbonate by treatment with 4-nitrophenyl chloroformate 
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(NPC) and functionalized with bioadhesive ligands via a urethane linkage (Figure 4.1 B-

3,4).  The progress of the synthesis and ligand tethering was validated by spectra from X-

ray photoelectron spectroscopy (XPS) and glancing angle Fourier transform infrared 

(FTIR) spectroscopy [18]. Brush thickness was easily modulated by polymerization time 

as previously shown [18].  All poly(OEGMA) brushes used in this study were grown to a 

thickness of 135 Å.  

Two bioadhesive ligands with different integrin specificities were examined: (i) 

the recombinant fragment FNIII7-10, which presents the RGD motif in the 10th type III 

repeat and the PHSRN synergy sequence in the 9th type III repeat of FN in the correct 

structural context and exhibits high selectivity for integrin α5β1 [19]; and (ii) a linear RGD 

oligopeptide (GRGDSPC) that primarily supports αVβ3-mediated adhesion and is 

considered the “gold” standard in the field [108].  Controlled surface densities of tethered 

ligands were obtained by treating the NPC-modified polymer brushes with varying 

concentrations of peptide (Figure 4.2 A).  The differences in tethering efficiency between 

FNIII7-10 and RGD can be attributed to significant differences in ligand size.  Importantly, 

ligand densities adsorbed on control surfaces presenting unmodified poly(OEGMA) 

brushes were <5% of the density immobilized on the functionalized surfaces, 

demonstrating the non-fouling nature of the unmodified poly(OEGMA) brush.  
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Figure 4.1. Poly(OEGMA) brushes with ligand tethered on titanium. (A) 
Schematic of FNIII7-10-tethered poly(OEGMA) brush system on titanium. Both 
linear RGD peptide and a fibronectin fragment FNIII7-10 (purple) containing both 
the RGD (red) and PHSRN (yellow) sequence in the native ECM structural 
conformation were tethered to poly(OEGMA) brushes via NPC chemistry. 
Unactivated hydroxyl groups provided the non-fouling nature of the brushes. (B) 
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Tethering scheme of integrin ligands to “activated” poly(OEGMA) brushes on 
titanium. 

We next assessed the in vitro bioresistance and adhesive capacity of unmodified 

poly(OEGMA) brushes and brushes with peptide tethered on titanium.  Surfaces were 

incubated in serum-containing media for various times and subsequently challenged with 

osteoblastic cells for 1 h.  In contrast to control unmodified titanium which supported 

high levels of cell adhesion and spreading, unmodified poly(OEGMA) brushes resisted 

cell adhesion for over 56 days (Fig. 2B).  The unfunctionalized poly(OEGMA) brushes 

exhibited excellent bioresistance compared to commonly-used model self-assembled 

monolayers of tri(ethylene glycol)-functionalized alkanethiols on gold, which displayed 

loss of bioresistance by the 10-day time point in serum-containing media.   Moreover, 

poly(OEGMA) brushes presenting either FNIII7-10 or RGD supported levels of cell 

adhesion comparable to the unmodified titanium (Figure 4.2 B), demonstrating that the 

tethered ligand is in a bioactive form that supports adhesive activities.  Furthermore, 

NPC-activated brushes which were quenched with glycine, and to which no ligand was 

added, supported minimal cell adhesion, verifying that surface activation does not affect 

the brush non-fouling nature (Figure 4.2 B). In addition, this data indicates that, after 

glycine quenching, effectively no NPC groups are available for tethering of serum 

proteins, which could have potentially reduced the specificity of the surface.  Finally, we 

demonstrated surface density-dependent increases in available FNIII7-10 ligand using a 

receptor-mimetic antibody-based assay (Figure 4.2 C).  Taken together, these results 

demonstrate a robust approach to coat clinical-grade titanium with non-

fouling/bioresistant oligo(ethylene glycol)-substituted polymer brushes which can be 

functionalized with controlled densities of bioadhesive ligands. 
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Figure 4.2. Bioresistance and ligand tethering on poly(OEGMA) brushes on 
titanium (Ti). (A) Tethered densities of RGD and FNIII7-10 on poly(OEGMA) 
brushes on Ti (hyperbolic curve fit, R2=0.95). (B) In vitro bioresistance of 
poly(OEGMA) brushes on Ti to cell adhesion in serum-containing media. Cells 
were stained with green-colored calcein-AM (scale bar 100 μm). EG3 SAMs were 
cell-resistant until day 10, while poly(OEGMA) brushes remained cell adhesion-
resistant for at least 56 days. Cells adhered (1 h) and spread in serum-free 
conditions on FNIII7-10- and RGD-tethered brushes (0.9 pmol/cm2) to the same 
extent as on serum-treated unmodified Ti. Cells did not adhere or spread in 
serum on NPC-activated brush surfaces quenched with glycine to which no 
bioadhesive ligand was added. (C) Bioactivity and accessibility of FNIII7-10 
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tethered to poly(OEGMA) brushes as determined by a receptor-mimetic antibody 
assay. FNIII7-10 activity was detected on the NPC-modified poly(OEGMA) brushes 
(but not the unmodified brushes). 

In vitro evaluation of these engineered titanium surfaces was performed using 

primary rat bone marrow stromal cells since this heterogeneous population contains 

osteoprogenitors, and human bone marrow stromal cells are currently used in clinical 

applications.  Cell adhesion was examined using a centrifugation assay that applies a 

controlled detachment force.  To allow direct comparisons between ligand-tethered 

surfaces, an equimolar ligand density of 0.9 pmol/cm2 was used; this value represents the 

highest ligand density that could be ascribed for both surfaces to be equimolar.  Upon 

exposure to serum, high levels of cell adhesion were observed for polymer brushes 

modified with either FNIII7-10 or RGD brushes, as well as unmodified titanium (which 

adsorbs RGD-containing adhesive proteins from serum) (Figure 4.3 A). Unmodified 

poly(OEGMA) brushes displayed background levels of adhesion, further illustrating the 

bioresistance of this system.  Importantly, a blocking anti-α5 antibody completely 

eliminated cell adhesion to FNIII7-10-tethered surfaces (p<0.005), whereas an anti-αv 

antibody had no effect, verifying the specificity of this surface for α5β1 integrin.  

Conversely, a function-perturbing anti-αv antibody eliminated adhesion to both RGD-

tethered surfaces and serum-exposed unmodified titanium (p<0.01; Figure 4.3 A), 

indicating that adhesion to these surfaces is primarily mediated by the αVβ3 integrin. As a 

complementary test of integrin specificity, we quantified integrin binding using a 

biochemical cross-linking/extraction/reversal technique [172].  Consistent with the 

antibody blocking experiments, FNIII7-10-tethered brushes supported significantly higher 

levels of bound α5β1 integrin compared to RGD-tethered brushes and serum-exposed 

titanium (p<0.01; Figure 4.3 B).  On the other hand, the RGD-tethered brushes and 
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serum-exposed titanium supported higher levels of bound αVβ3 that the FNIII7-10 support 

(p<0.006).  We note that the crosslinking/extraction technique has been validated for 

integrin binding to extracellular matrix proteins and relies on crosslinking free amines on 

both the receptor and ligand.  Because the tethered RGD has no free amine, we attribute 

the αVβ3 signal on the RGD surfaces to crosslinking of clustered integrin-RGD bonds that 

were not completely extracted.  This observation is consistent with previous results for 

cells adhering to RGD-presenting self-assembled monolayers [108].  The possibility that 

RGD tethering altered the non-fouling character of the brushes to result in non-specific 

protein adsorption from serum is highly unlikely as SPR measurements demonstrated 

background protein adsorption to RGD-functionalized supports.  Furthermore, minimal 

cell adhesion under serum conditions to NPC-activated, glycine-quenched brush surfaces 

verified that brushes presenting a non-adhesive amino acid residue retain their non-

fouling nature (Figure 4.2 B).  More importantly, the integrin-specific character of each 

specific surface treatment was demonstrated by the integrin-blocking adhesion results.  

Collectively, these data demonstrate that FNIII7-10-functionalized titanium selectively 

supports α5β1-mediated cell adhesion, whereas the RGD-tethered surface primarily binds 

αVβ3 integrin.  

 

 

 

 

 

 



www.manaraa.com

 87 

                   

 

 
Figure 4.3. Poly(OEGMA) brushes on Ti functionalized with integrin ligands 
display integrin specificity. (A) Bone marrow stromal cell adhesion to 
engineered surfaces is mediated by different integrin receptors as demonstrated 
by blocking antibodies. Ti-serum: a vs. no antibody control (p<0.01); RGD: b vs. 
no antibody control (p<0.01); FNIII7-10: c vs. no antibody control (p<0.005). (B) 
Integrin binding analysis using a crosslinking/extraction/reversal procedure for 
stromal cells plated on ligand-tethered brush surfaces of equimolar density. α5 :a 
vs. RGD, Ti-serum (p<0.01); αv: a vs. Ti-serum (p<0.006). 
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As a final demonstration of the integrin-specific nature of these engineered 

supports, we assessed FAK phosphorylation in the presence of integrin blocking 

antibodies.  FAK is an intracellular signaling molecule involved in integrin-mediated 

signal transduction and the osteogenic differentiation pathway [175,188].  We used 

phosphotyrosine-specific antibodies to examine the activation state of three important 

tyrosines in FAK: Y397 (autophosphorylation site), Y576 (essential for maximal kinase 

activity), and Y861 (major Src phosphorylation site) (Figure 4.4).  FAK Y397 and Y576 

exhibited higher phosphorylation levels on FNIII7-10-engineered surfaces compared to 

RGD-functionalized brushes and serum-exposed titanium (p<0.01), whereas Y861 

phosphorylation was elevated for the RGD-functionalized and serum-exposed titanium 

relative to the FNIII7-10-tethered surface (p<0.03).  Moreover, blocking antibodies against 

α5, but not β3, reduced the levels of phospho-Y397 and Y576 on the FNIII7-10-presenting 

titanium (p<0.04).  For the RGD-functionalized poly(OEGMA) brushes, only the anti-β3 

antibody reduced FAK phosphorylation (p<0.05).  We postulate that these differences in 

integrin binding specificity and FAK activation modulate cell signaling pathways and 

higher order cellular activities. 

 

      

 

 

 

 

 



www.manaraa.com

 89 

 

  

Figure 4.4. FAK activation on equimolar ligand-tethered brush surfaces and 
serum-treated titanium is integrin-dependent. Relative levels of phospho-Y in 
FAK in the presence or absence of integrin blocking antibodies. Activation levels 
for Y397 and Y576 were higher on FNIII7-10-tethered brushes than RGD-
functionalized and Ti-serum supports (b; p<0.01). Y861 phosphorylation levels 
were reduced in FNIII7-10-functionalized titanium relative to the other surfaces (b; 
p<0.03). Integrin blocking antibodies selectively reduced FAK phosphorylation. 
Y397: a vs. no antibody control (p<0.04); Y576: a vs. no ab control (p<0.05); 
Y861: a vs. no ab control (p<0.05). 
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 We used quantitative RT-PCR to probe osteoblastic gene expression in 7-day 

cultures of bone marrow stromal cells cultured in osteogenic media to investigate effects 

of integrin binding specificity on osteoblastic differentiation.  Expression levels of 

Runx2/Cbfa1, a transcription factor essential for osteoblastic differentiation and bone 

formation  [163], were elevated on the FNIII7-10-functionalized surface compared to 

brushes functionalized with equimolar densities of RGD (p<0.03; Figure 4.5 A).  The 

late osteoblastic markers osteocalcin (OCN) and bone sialoprotein (BSP) also exhibited 

increased transcript levels on FNIII7-10-tethered brushes relative to RGD-functionalized 

supports (p<0.003).  Consistent with the gene expression results, FNIII7-10-tethered 

surfaces displayed higher alkaline phosphatase activity than RGD-functionalized surfaces 

(p<0.03; Figure 4.5 B).  Finally, matrix mineralization, as determined by calcium 

incorporation, was used as an end-point functional marker.  FNIII7-10-engineered titanium 

displayed a 2-fold enhancement in mineralization relative to the RGD-tethered supports 

(p<0.01; Figure 4.5 C).  No differences were observed between RGD-functionalized 

brushes and serum-exposed unmodified titanium for any differentiation marker.  

Collectively, these results demonstrate that non-fouling brush surfaces presenting FNIII7-

10 to target α5β1 integrin trigger enhance osteoblastic differentiation and mineralization in 

primary bone marrow stromal cells compared to RGD-tethered brushes and serum-treated 

titanium surfaces that support αVβ3 binding. 

Effects of Integrin-Specific Implant Surfaces in Modulating Osteoblastic Differentiation 

and Mineralization 
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We quantified osseointegration of implants in a rat tibia cortical bone model [49] 

to evaluate the in vivo performance of the engineered titanium surfaces in bone healing. 

Importantly, this in vivo model provides a rigorous platform to evaluate implant coating 

function in a relevant orthopedic setting. Two 2.0-mm diameter defects were drilled into 

the medial aspect of the proximal tibial metaphysis using a saline cooled drill.  Tapered 

cylindrical implants (Figure 4.6 A) of clinical-grade titanium were press-fit into the 

cortical defects (Figure 4.6 B).  Implants were machined with a tapered stop collar to 

ensure equivalent initial bone contact across all samples, and each implant had a small 

channel spanning the head to permit subsequent pull-out testing following explantation. 

Biomaterial surface treatments evaluated were (i) unmodified poly(OEGMA) brushes, (ii) 

unmodified titanium (as a reference to the current clinical treatment), and brushes 

modified with either (iii) FNIII7-10 or (iv) RGD at equimolar ligand densities (0.9 

pmol/cm2).  In addition, a small number of implants with varying densities of FNIII7-10 

were analyzed.  All implants were well-tolerated, and no complications were encountered 

during the course of the study.  Following four weeks of implantation, the rat tibiae were 

harvested and analyzed for bone-implant contact by histomorphometry and implant 

mechanical fixation by pull-out testing.  

Integrin Specificity Modulates Functional Implant Osseointegration In Vivo 

Histological sections revealed extensive and contiguous bone matrix around 

FNIII7-10-functionalized titanium implants (Figure 4.6 C).  Less bone tissue was 

observed around the unmodified poly(OEGMA) brushes, poly(OEGMA) brushes with 

RGD tethered, and reference unmodified titanium implants, and the tissue present 

displayed a more porous morphology (Figure 4.6 C).  Histomorphometric analysis of 
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histological sections demonstrated a 70% enhancement in bone-implant contact area for 

FNIII7-10-functionalized implants compared to the RGD-tethered or unfunctionalized 

poly(OEGMA) brushes (p<0.02; Figure 4.6 D).  Notably, the bone-implant contact area 

for the FNIII7-10 group was significantly higher than that for the unmodified clinical-

grade titanium implant (p<0.02).  No evidence of multi-nucleated cells, foreign body 

giant cells, or fibrous capsule was observed in any of the sections.  These findings 

demonstrate that controlled presentation of the integrin-specific ligand FNIII7-10 using our 

polymer brush strategy significantly enhances implant integration into the host bone 

compared to implants presenting RGD-functionalized poly(OEGMA) brushes and the 

current clinical standard (unmodified titanium). 

 Mechanical fixation was used as an outcome measure of functional 

osseointegration.  Pull-out mechanical testing revealed significantly higher mechanical 

fixation of the FNIII7-10-functionalized implants over all other groups (p<0.03; Figure 4.6 

E). Implants coated with unmodified poly(OEGMA) brushes generated the lowest 

amount of bone apposition and mechanical fixation, suggesting that the polymer brushes 

retain their non-fouling/bioresistant character in vivo.  FNIII7-10-functionalized implants 

exhibited a 3.0-fold enhancement in fixation over RGD-tethered implants (p<0.009) and 

approximately a 4-fold improvement compared to the unmodified poly(OEGMA) brush 

coating (p<0.001).  Notably, there were no differences in bone apposition or mechanical 

fixation between RGD-functionalized and unmodified poly(OEGMA) implants, 

demonstrating that presentation of the linear RGD sequence has no effects on implant 

osseointegration.  Unmodified titanium displayed higher fixation than the 

unfunctionalized poly(OEGMA) brush (p<0.01), but the pull-out force was not 
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statistically different from the RGD-tethered surface.  Remarkably, FNIII7-10-

functionalized titanium exhibited higher mechanical fixation that the unmodified titanium 

(p<0.05), indicating that this biomolecular engineering strategy outperforms the current 

clinical standard.  

 A major advantage of the poly(OEGMA) brush system described in this work is 

the ability to precisely control the presentation of tethered ligands.  Increases in the 

density of tethered FNIII7-10 yielded linearly proportional increases in available bioactive 

ligand in vitro (Figure  4.2 D).  We examined whether the density of tethered 

bioadhesive ligand modulated in vivo bone healing by implanting samples with varying 

tethered densities of FNIII7-10.  Mechanical fixation increased with FNIII7-10 surface 

density, displaying linear increases at low surface densities and reaching a saturation 

limit at high densities (Fig. 5F).  These results are accurately described by a simple 

hyperbolic relationship (R2 = 0.87).  This functional dependence is consistent with in 

vitro results for simple receptor-mediated phenomena such as adhesion strength [150].  

To our knowledge, this is the first experimental study demonstrating finely tuned in vivo 

healing in response to engineered bioadhesive cues on material surfaces. 
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Figure 4.6. Integrin specificity modulates in vivo implant osseointegration. 
(A) Schematic of tapered titanium implant used in rat tibia implant model. (B) 
Photograph showing placement of implants in rat tibia. Two implants were placed 
in each tibia. Inset micrograph is of longitudinal section of entrenched implant after 
4 wk implantation, stained with Sanderson’s Rapid Bone Stain™ and van Gieson 
counterstain. (C) Histological sections at 4 weeks post-implantation showing 
mineralized bone (orange)-implant (black) contact (scale bar 0.5 mm). FNIII7-10-
tethered implant surfaces displayed greater bone tissue formation and 
connectivity compared to other surface treatments. (D) Bone-implant contact 
area. a vs. RGD (p<0.02); b vs. Ti-serum (p<0.02); c vs. poly(OEGMA) (p<0.02). 
(E) Functional osseointegration as determined by pull-out force. a vs. RGD 
(p<0.009); b vs. Ti-serum (p<0.05); c vs. poly(OEGMA) (p<0.001); d vs. 
poly(OEGMA) (p<0.01). (F) Functional osseointegration increases with FNIII7-10 

tethered density (hyperbolic fit, R2 = 0.87). 
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Discussion 

The presentation of biological active factors on the surface of biomedical devices 

has emerged as a promising strategy to enhance host healing responses to implanted 

devices [31,187].  Nonetheless, these biomimetic approaches have elicited marginal 

improvements in in vivo functional performance [10-12].  We hypothesized that these 

marginal healing responses result from uncontrolled signaling responses at the tissue-

implant interface arising from unregulated or sub-optimal integrin binding. While model 

biomaterial surfaces to control ligand presentation (e.g., self-assembled monolayers on 

gold or silicon) have been extensively studied, the development of robust coating 

technologies for tunable presentation of bioactive factors on materials approved for 

biomedical implantation has been particularly challenging.  Recent bioactive implant 

surface treatments on Ti, including porous hydroxyapatite, collagen I, and calcium 

phosphate co-precipitated with various other biological ligands, have augmented aspects 

of bone healing compared to unmodified Ti in various animal models [189-191]. 

However, these strategies lack control over protein adsorption, ligand presentation and 

density, and surface stability. The utility of this brush system in this study is the level of 

precise control over bioactive ligand density and presentation and cellular integrin 

interaction in a physiological environment.   

In the present work, we grafted clinical-grade titanium implants with a robust 

non-fouling polymer coating functionalized with controlled densities of ligands of 

varying integrin specificity to examine the role of integrin binding specificity on tissue 

responses to implanted devices.  Our results demonstrate that conferring integrin binding 
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specificity to biomedical implants regulates the osteoblastic differentiation of bone 

marrow-derived progenitor cells and significantly enhances in vivo bone healing and 

implant functional osseointegration.  This work provides the first experimental 

demonstration that in vivo healing response can be finely tuned by engineering 

bioadhesive cues on synthetic biomedical material surfaces, and provides novel insights 

into the role of integrin receptors in directing specific signaling pathways and osteogenic 

cell functions. Importantly, this biomolecular strategy is based on surface engineering a 

robust non-fouling polymer coating on clinical-grade titanium, and therefore is applicable 

to existing biomedical implants.  The integrin-specific biomaterial surfaces significantly 

enhanced in vivo implant integration and fixation compared to the current clinical 

standard (unmodified titanium) as well as biomimetic RGD-based surface treatments.  

This integrin-specific enhancement of functional integration may be potentially even 

greater since the FNIII7-10 surface density tethered to the polymer coating was below 

saturation. Given the central role of integrin receptors in the maintenance and repair of 

numerous tissues, we expect that this strategy of conveying integrin specificity will 

enhance healing responses and integration of other biomedical implanted devices. 

We attribute the enhanced bone tissue formation and functional osseointegration 

of the α5β1-specific titanium implants to increased recruitment of osteoprogenitor cells 

and differentiation into osteoblasts at the tissue-implant interface.  As demonstrated in the 

in vitro analyses (Fig. 3), α5β1-mediated adhesion upregulated osteoblastic gene and 

protein expression and matrix mineralization in marrow-derived progenitor cells. The 

α5β1 integrin is the central fibronectin receptor, and its expression has been associated 

with increased mineralization of osteosarcoma and calvarial osteoblast cells [189]. This 
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study provides further evidence for directed α5β1-mediated osteogenic differentiation as 

well as additional associated signaling through specific residues of FAK.  In addition to 

cells directly interacting with the bioadhesive ligands on the implant surface, paracrine 

factors secreted at the tissue-interface could contribute to the pro-osteogenic healing 

response by recruiting additional osteoprogenitors and/or promoting osteoblastic 

differentiation in neighboring cells.   

No differences in bone-implant contact or functional osseointegration were 

observed between RGD-tethered and unmodified titanium implants.  We attribute the 

suboptimal host healing responses to these implants to reduced osteoblastic 

differentiation and bone formation.  These two surfaces present adhesive ligands that 

primarily bind αVβ3.  Osteogenic cell adhesion to the short synthetic RGD is primarily 

mediated by this integrin (Fig. 2).  Similarly, cell adhesion to the unmodified titanium is 

mediated by RGD-containing proteins (e.g., fibrinogen, vitronectin [192]) that adsorb 

non-specifically to titanium and support αVβ3-mediated adhesion.  As demonstrated in the 

in vitro analyses (Fig. 3) and previous work (15), binding of αVβ3 suppresses osteoblastic 

differentiation. Moreover, αvβ3-overexpressing osteoblasts exhibited impeded 

mineralization capacity due to suboptimal integrin-matrix interactions, JNK activity, and 

matrix protein expression [50]. In addition to reduced osteoblastic differentiation, it is 

possible that presentation of αVβ3-selective ligands reduces overall bone formation by 

enhancing osteoclastic activity.  Integrin αVβ3 is a major component of podosomes in the 

sealing zones of resorptive pits [193], and αVβ3 antagonists reduce bone resorption by 

reducing osteoclast activity [194-196].  However, we did not observe accumulation of 
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multi-nucleated cells at the bone tissue-implant interface, suggesting that osteoclastic 

responses were not the dominant mechanism. Using the unique integrin-specific ligand 

presentation system in this study, we have obtained mechanistic insights into the 

functional roles of integrins in directing osteogenic behavior of stem-like stromal cells 

both in vitro, and, for the first time, in vivo. 

A major contribution of the present study is the application of a stable non-fouling 

polymer coating that can be precisely engineered to present bioactive factors as a general 

strategy to convey biofunctionality to existing clinical devices.  This approach is directly 

translatable to metal oxides and ceramic materials, and the tethering scheme is amenable 

to other protein ligands, including growth factors, antibodies, and enzymes, as well as 

aminated nucleic acids, carbohydrates, and lipids.  Moreover, we have established the 

high physiological stability of this polymer brush system, affording long-term direct in 

vivo functional comparison of bioactive ligands.  Consequently, we have been able to 

demonstrate in this study an integrin-specific mechanism for the regulation of progenitor 

cell differentiation into osteoblasts and in vivo enhancement of bone healing and implant 

osseointegration. 

Summary 

 Clinical-grade titanium implants were grafted with a non-fouling oligo(ethylene 

glycol)-substituted polymer coating functionalized with equimolar densities of either 

RGD peptide or α5β1-integrin-specific FN fragment FNIII7-10. Biomaterials presenting 

FNIII7-10 supported enhanced α5β1 integrin binding and osteoblastic differentiation in 

bone marrow stromal cells compared to unmodified titanium and RGD-presenting 

surfaces, which promoted primarily αvβ3 binding.  Importantly, FNIII7-10-functionalized 
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titanium significantly improved functional implant osseointegration compared to RGD-

functionalized and unmodified titanium in vivo.   This work identifies a robust strategy 

that may be applicable to improve the biological performance of other biomedical devices 

and constructs for regenerative medicine. 
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CHAPTER 5 

SIMPLE APPLICATION OF FIBRONECTIN-MIMETIC COATING 

TO ENHANCE OSSEOINTEGRATION OF TITANIUM IMPLANTS 

 

Introduction 

Current orthopedic implant surface technologies, including porous coatings and 

calcium phosphate overcoats, seek to promote bone cell ingrowth and mineral formation 

[3,197,198].  Although these approaches are successful in many cases, they can be 

restricted by slow rates of osseointegration and poor mechanical anchorage, especially in 

challenging clinical cases, such as those associated with large bone loss and poor bone 

quality [4].  In addition, these surface modification approaches rely on costly and 

manufacturing-intensive processes.  As an alternative to these surface technologies, 

emerging biomimetic strategies have focused on the presentation of biological motifs, 

including extracellular matrix sequences and growth factors [117,199-209].  The general 

paradigm of these bio-inspired approaches is the covalent immobilization (tethering) of 

the biological entities onto the underlying material support, which often involves multi-

step procedures to render the support suitable for biofunctionalization [31,81].  In 

contrast, we recently described a simple, one-step coating procedure that relies on the  

 

 

*Modified from 
T.A. Petrie, C.D. Reyes, K.L. Burns, A.J. García, Simple Application of Fibronectin-Mimetic 
Coating Enhances Osseointegration of Titanium Implants. Journal of Cellular and Molecular 
Medicine 2008, In Press.   
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passive adsorption of a synthetic collagen-based peptide onto biomedical grade titanium 

to enhance osseointegration [49].  

Integrins are a large family of heterodimeric (αβ) transmembrane receptors that 

mediate cell-matrix and cell-cell adhesion and trigger signals regulating cell survival, 

proliferation, and differentiation [16,28,210-212]. Osteoprogenitor cells and osteoblasts 

express a wide panel of integrins, including α5β1, αvβ3, α3β1, α8β1 and α2β1, that mediate 

interactions with collagens [213,214], fibronectin [36,215], laminins [216] and other 

matrix components [37,80].  Specific integrin-ECM adhesive interactions regulate 

osteoblast function and mineralization [17,217-220].  Importantly, osteoblast integrin-

ECM interactions are dynamic, and the extent of early and late mineralization is 

dependent on the particular integrin-matrix protein interactions engaged  [36,221-222].  

Because of the central roles of integrin-ECM interactions in osteoblast activities, 

integrins represent an attractive target in the design of biofunctionalized orthopedic 

implants [81].  The large majority of these efforts have centered on presenting short 

binding motifs incorporating the arginine-glycine-aspartic acid (RGD) minimal binding 

sequence from FN, bone sialoprotein and osteopontin [105,106,223].  Despite improved 

adhesion and differentiation in vitro, implant surfaces presenting RGD motifs do not 

consistently enhance osseointegration and bone formation in animal models 

[10,12,104,105].  In the present work, we evaluated the ability of different fibronectin-

inspired biomolecular coatings to promote in vitro osteoblastic differentiation and 

implant osseointegration in a rat cortical bone model.  Notably, these biomolecular 

coatings rely on simple physisorption of FN-based ligands onto biomedical-grade 

titanium as a simple, clinically-translatable, implant biofunctionalization strategy. 
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Materials and Methods 

The bioadhesive ligands examined in this study were: (i) a recombinant fragment 

spanning the 7th-10th type III repeats of human fibronectin (FNIII7-10), (ii) human plasma 

fibronectin (pFN), and (iii) a linear RGD peptide (GRGDSPC). FNIII7-10 was expressed 

in E. coli and purified as previously described [108]. Briefly, JM109 cells were 

transformed with plasmid encoding for biotinylated FNIII7-10, streaked onto agar plates, 

colonies isolated, and cultures grown overnight in standard LB Broth. Cells were lysed 

via lysozyme/sonication and the FNIII7-10 was purified by affinity chromatography on a 

monomeric avidin column by elution with d-biotin (Pierce, Rockford, Ill.). Purity was > 

95% as assessed by SDS-PAGE and Ponceau solution staining. After further filtering 

with 30 kDa Microcon centrifugal filter devices (Millipore, Bedford, MA) to remove 

excess d-biotin, purity was determined to be > 98%.  FNIII7-10 was maintained in a stock 

solution of Dulbecco’s phosphate buffered saline at 2 mg/mL (PBS; Invitrogen, Carlsbad, 

CA). Human pFN was purchased from Invitrogen (catalog #33016) and reconstituted in 

aliquots of sterile distilled water. Purity was assessed by SDS-Page by Invitrogen Quality 

Control at > 95%. The RGD peptide was obtained from BACHEM (Torrance, CA, 

catalog #H-7245), reconstituted in 0.1% TFA (trifluoroacetic acid) and assessed as > 98% 

pure.  

Bioadhesive Ligands and Preparation of Surfaces 

Titanium (Ti) metal was obtained from Kurt J. Lesker Company Part 

#EVMTI137EXE (Clairton, PA) as pellets of 99.97% pure titanium. For in vitro assays, 

thin films (300 Å) of this titanium were deposited onto clean glass coverslips using an 

electron bean evaporator (2 x 10-6 Torr) at a deposition rate of 1 Å/s. Slides were then 
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immersed in a FNIII7-10, pFN, or RGD peptide solution at various coating concentrations 

in PBS for 30 min.  Surfaces were subsequently blocked with 1% heat denatured bovine 

serum albumin (BSA). For the in vivo experiments, implants were machined from 

commercially pure, clinical-grade (grade 4) titanium rods (Titanium Industries, Inc., 

Cleveland OH). Ligand surface density measurements were obtained via surface plasmon 

resonance (SPR) using a Biacore X instrument. For subsequent cell-based experiments, 

FNIII7-10 and pFN were coated on Ti surfaces at equimolar (RGD binding site) surface 

densities as determined by SPR.  Other surfaces were either exposed to serum or RGD 

peptide (50 μg/mL) for 30 min. 

Primary rat bone marrow stromal cells (rBMSCs), a heterogeneous cell 

population containing osteoprogenitors and which represents an analogous cell source to 

human bone marrow stromal cells currently used in clinical applications [224,225], were 

selected as the cell model to examine this biomimetic coating technology.  rBMSCs were 

isolated and cultured under IACUC-approved procedures [49]. Cells were passaged no 

more than three times post-rat isolation in growth medium (α-MEM + 10% fetal bovine 

serum + 1% penicillin-streptomycin) before usage in all in vitro experiments. During 

culture, cells were split prior to 90% confluence, typically every 3  days. Cell adhesion to 

ligand-adsorbed Ti surfaces under serum-free conditions was measured at 1 h adhesion 

time at 37 °C using a centrifugation assay [171].    For integrin blocking experiments, 

cells were incubated in the presence of 20 µg/mL anti-rat α5 integrin (CD49e, clone 

HMα5-1, BD Biosciences) or anti-rat αv (CD51, clone 21, BD Biosciences) blocking 

antibodies for 20 min prior to cell seeding, and seeded for 1 h adhesion time. 

Cell Adhesion, Integrin Binding, and Signaling Assays 
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Integrin binding levels (post 30 min adhesion) were assessed using a 

crosslinking/extraction/reversal procedure [172]. This procedure uses DTSSP to 

specifically crosslink integrins bound to their ligand.  Cellular components are then 

extracted using detergent and protease inhibitors, and crosslinks are reversed and the 

once bound integrins are collected. Integrin levels were quantified by Western blotting 

using primary antibodies against α5 integrin (AB1928, Chemicon; 0.5 μg/mL), and αv 

integrin (AB1930, Chemicon; 0.5 μg/mL). Membranes were washed in TBS-Tween (20 

mM Tris HCl pH 7.6, 137 mM NaCl, 0.1% Tween 20) for 45 min and incubated in 

secondary antibody (biotin-conjugated anti-rabbit IgG, 1:20,000 dilution in Blotto) for 1 

h at room temperature while rocking.  Membranes were washed again in TBS-Tween for 

45 min and incubated in a tertiary antibody (alkaline phosphatase-conjugated anti-biotin 

IgG, 1:10,000 dilution in Blotto) for 1 h at room temperature while rocking.  After 

antibody incubation, membranes were washed in TBS-Tween for 45 min and 

immunoreactivity was detected using an ECF fluorescent substrate for 5-10 min.  Bands 

were visualized using a Fuji Image Analyzer and further quantified and analyzed using 

Adobe Photoshop software. 

For FAK activation experiments, rBMSCs were incubated in serum-free 

suspension (αMEM + 5% BSA)  for 30 min to reduce FAK background activation and 

then in the presence or absence of integrin blocking antibodies for 20 min prior to cell 

seeding for 2 h at 37 °C. Cells were lysed in cold RIPA buffer (1% Triton X-100, 1% 

sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 150 mM Tris-HCl (pH 7.2), 350 µg/mL 

PMSF, 10 μg/mL leupeptin, 10 μg/mL aprotonin) on ice for 15 minutes.  FAK activation 

was subsequently quantified via Western blotting using primary antibodies against 
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specific phosphorylated FAK tyrosine residues (pY397, pY576, pY861 in Blotto for 1 h) 

and total FAK (anti-FAK). Bands were visualized and quantified in the same manner as 

the integrin binding procedure. FAK phosphorylation levels were normalized to the 

amount of total FAK for each experimental condition. 

 After  plating for 16 h in 10% serum, cells were incubated in BrdU (3.1 µg/mL) 

for 4 h. Samples were fixed in 70% ethanol, denatured in 4 M HCl, neutralized in 100 

mM Tris-HCl + 50 mM NaCl, and blocked with 5% fetal bovine serum. Samples were 

then incubated with anti-BrdU (1:1000) and AF488 anti-mouse IgG (1:200) as well as 

Hoechst dye (1:10,000) to stain nuclei. Using in-house image analysis, the number of 

cells positive for BrdU relative to total cell nuclei was quantified.  

Proliferation Assay 

 rBMSCs at low passage were seeded on appropriate surfaces at 200 cells/mm2 in 

growth medium (α-MEM + 10% fetal bovine serum + 1% penicillin-streptomycin). After 

24 h, cultures were switched to osteogenic medium consisting of growth medium 

supplemented with 50 μg/mL Ŀ-absorbic acid and 3 mM sodium ß-glycerophosphate. 

Total RNA was isolated at day 7 using Qiagen RNEasy kits. cDNA synthesis was 

performed on DNAase I-treated (25 Kunitz units) RNA by oligo(dT) priming via 

SuperScript II preamplification system (Invitrogen). Reverse-transcriptase PCR was 

performed with an Applied Biosystems ABI Prism 7700 using osteoblast-specific primers 

and SYBR green intercalating dye [20]. Transcript concentration was quantified from a 

Osteoblast-Specific Gene Expression 
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linear curve of standards, which were amplified from cDNA via oligonucleotide primers 

for each gene assayed (Runx2, BSP, and OCN). 

 ALP activity was quantified biochemically at 7 days post-seeding. Protein was 

isolated from cell cultures and equal amounts (2.5 μg) were added to 5-methyl 

umbelliferyl phosphate fluorescent substrate (60 μg/mL) for 60 min. Fluorescence was 

measured (360 nm/465 nm) and enzymatic activity normalized to total amount of protein. 

Calcium content was analyzed at 7 days in culture by dissolving mineralized deposits 

overnight in 1.0 N acetic acid and using a calcium-detecting reagent (Diagnostic Services 

Ltd.). Mineralization analyses were conducted by von Kossa staining 14-day cultures, 

and percent mineralization was quantified by image analysis. 

Alkaline Phosphate (ALP) Activity and Matrix Mineralization Assays 

 Implantations into the tibiae of mature Sprague-Dawley male rats were conducted 

in accordance with an IACUC-approved protocol as described previously [49]. A day 

before implantation, Ti implants were soaked in de-ionized water for 30 minutes, and 

subsequently stripped of the existing oxide layer by submersion in 4% HF for 30 s. A 

new oxide layer was formed by incubation of implants in 35% HNO3.  This cleaning and 

re-growth of the oxide layer can be performed days before implantation as long as 

samples are subsequently kept clean. This stripping and re-growth of the titanium oxide 

layer was done to generate relatively clean surfaces free of organic debris and have 

surfaces equivalent to what is used in clinical implants. This cleaning step is not required 

for adsorption of bioactive peptides. At the time of surgery, implants were coated with 

Implantation Procedure and Functional Analysis 
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ligand by incubating in ligand solutions in PBS for 30 min. Tapered Ti implants treated 

with FNIII7-10 or pFN at equimolar RGD-coating density (0.8 pmol/cm2) or unmodified Ti 

were press fit into the cortical defects. Two 2-mm diameter defects were drilled into the 

medial aspect of the proximal tibial metaphysis of each leg to achieve a total of four 

implants per animal (Figure 5.6 A,B). Implant locations (R/L leg, proximal/distal 

location) were randomized for each surface condition (pFN, FNIII7-10, unmodified Ti) 

and a total of 11 rats were used. After four weeks of implantation [49],  the rat tibiae were 

harvested and assessed for bone apposition and implant mechanical fixation. Proximal 

tibiae were explanted and either fixed in neutral buffered formalin for histology or 

wrapped in PBS to maintain moisture for immediate mechanical testing. Formalin-fixed 

tibiae were embedded in poly(methyl methacrylate), dehydrated, and stained with 

Sanderson’s Rapid Bone StainTM and a van Gieson counterstain. This stained mineralized 

bone (yellow-orange) and soft tissue and osteoid (blue-green). Bone apposition was 

quantified as the percentage of the implant’s surface in contact with the bone, and 8 

fields/implant were quantified (N=4 implants per condition). Pull-out testing was 

performed to quantify implant mechanical fixation to surrounding bone tissue using an 

EnduraTEC Bose ELF 3200. The ends of each excised tibia were secured using a 

customized holding apparatus and the exposed head of the implant attached to a load cell 

via a customized grip apparatus. Pre-loaded samples (< 2 N) were then subjected to a 

constant pull rate of 0.2 N/sec. The pull-out force (N), parallel to the long axis of implant, 

was the maximum load achieved before implant detachment or failure. 
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 Results are presented as mean ± standard error. Quantification of in vitro and in 

vivo experiments was performed on all samples used in each experiment. Results were 

analyzed by ANOVA in SYSTAT 8.0 (SPSS). If deemed significant, pairwise 

comparisons were performed using Tukey’s post hoc test and a confidence level of 95% 

was considered significant. In vitro assays were conducted in at least triplicate and 

replicated in two separate experiments. 

Statistics 

Results 

 Ti surfaces were either exposed to serum or passively coated with one of three 

biomimetic ligands: (1) FNIII7-10, a recombinant fragment of FN spanning the central cell 

binding domain that promotes α5β1-mediated cell adhesion and signaling [108]. This 

domain contains the central integrin-binding domain comprising the RGD and PHSRN 

synergy motifs that are essential for high affinity α5β1 binding; (2) full-length human 

plasma fibronectin (pFN), which is a dimer comprising multiple cell receptor binding 

sites; and (3) a linear RGD-containing peptide. Importantly, the FNIII7-10 fragment 

reconstitutes the 3-D presentation of both the RGD and PHSRN sequences found in pFN, 

excluding most of the additional adhesion and binding domains also present in pFN 

[108]. Adsorbed densities were measured by SPR.  As expected, adsorbed ligand density 

increased with ligand coating concentration exhibiting linear increases at low coating 

concentrations and reaching saturation values at high coating concentrations, described 

accurately by hyperbolic curve fits (Figure 5.1 A).  For all subsequent experiments, 

FN-mimetic Ligand Coatings 
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ligand coating concentrations were adjusted to yield equimolar surface densities (0.8 

pmol/cm2) of adhesive (RGD) sites in order to directly compare FNIII7-10 (45 ng/cm2) to 

pFN (125 ng/cm2). The linear RGD peptide was also considered for comparison as a 

ligand coating but exhibited poor adsorption efficiency.  Minimal RGD peptide densities 

(below the SPR detection limit 0.1 ± 0.07 ng/cm2 corresponding to 0.08 pmol/cm2) were 

measured (50 µg/mL coating concentration). The density of adsorbed biomolecules for 

serum-exposed surfaces was 195 ng/cm2.  

An enzyme-linked immunoabsorbent assay (ELISA) using the HFN 7.1 antibody, 

a mimetic of α5β1 binding to FN [52], verified that both FNIII7-10 and pFN adsorbed in a 

bioactive orientation which is highly accessible to integrin binding (Figure 5.1 B). 

Moreover, the antibody binding curve for adsorbed FNIII7-10 on Ti was shifted upward 

and to the left compared to the pFN curve, indicating that the average FNIII7-10 

orientation is more accessible to α5β1 binding than adsorbed pFN.  We did not perform 

ELISA measurements for serum-treated Ti because various RGD-containing proteins 

adsorb onto Ti from serum [226]. 

To probe for the main integrin receptors actively engaged during adhesion, a 

centrifugation cell adhesion assay was performed in the presence and absence of integrin-

specific blocking antibodies.  rBMSCs displayed greater levels of adhesion to FNIII7-10-

coated surfaces compared to Ti surfaces exposed to RGD or serum-treated Ti (p<0.008), 

and adhesion levels were equivalent to pFN-adsorbed surfaces (Figure 5.2 A). Because 

the in vitro adhesion assay is performed under serum-free conditions, the serum-exposed 

titanium surface was included to correspond to the untreated titanium surfaces in 

FN-Mimetic Ligand Surfaces Promote Integrin-Specific Cell Adhesion and Signaling 



www.manaraa.com

 111 

subsequent in vitro assays performed in the presence of serum.  Control experiments 

demonstrated no differences in adhesion between cells plated under serum-free 

conditions on surfaces pre-exposed to 10% serum and cells seeded on untreated titanium 

in the presence of serum. Hence, the untreated (in the presence of serum) and serum-

exposed surfaces are equivalent in terms of cell adhesion. Cell adhesion on RGD-exposed 

surfaces was not different from background levels, corroborating the SPR results that this 

short peptide cannot stably adsorb to titanium. Importantly, a blocking anti-α5 antibody 

effectively eliminated cell adhesion to FNIII7-10 surfaces (p<0.008), verifying the 

specificity of this surface for α5β1 integrin, but did not significantly reduce adhesion to 

pFN-coated or serum-treated surfaces.  Conversely, a blocking anti-αv antibody 

significantly reduced adhesion to the serum-exposed Ti surface (p<0.02), indicating that 

adhesion to this surface is mediated primarily by αv-containing integrins. This data also 

reflects the ability of titanium to adsorb many RGD-containing serum proteins, including 

vitronectin, which is recognized mainly by the αvβ3 integrin.  

We next examined integrin binding to further characterize the adhesion 

mechanism to ligand-coated implant surfaces.  Bound levels of α5 and αv integrins (after 

45 min adhesion) were quantified using a biochemical crosslinking/extraction/reversal 

technique. This robust technique utilizes a water-soluble crosslinker that isolates bound 

integrin-ligand pairs, and allows direct quantification of the total bound number of 

integrins. Consistent with the integrin blocking antibody experiments, cells displayed 

higher levels of bound α5 on FNIII7-10 surfaces over pFN (p<0.03) or Ti-serum (p<0.005) 

surfaces, whereas higher levels of αv integrin were engaged on pFN (p<0.03) and serum-

treated Ti surfaces (p<0.001) compared to FNIII7-10-coated Ti (Figure 5.2 B). Taken 
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together, these data establish that the FNIII7-10-adsorbed surfaces mainly support α5β1-

mediated adhesion, whereas the serum-treated and pFN surfaces engage αv-containing 

integrins, most likely αvβ3.  

 

 

 

 

 

 

 

 

 

Figure 5.1. Surface density and accessibility of bioactive integrin ligands 
adsorbed on titanium surfaces. (A) Adsorbed surface densities of pFN and 
FNIII7-10 to Ti surfaces as measured by surface plasmon resonance. A  total of at 
least 8 independent measurements for each peptide was performed. The tethering profile was fit 
to a simple hyperbolic curve  (FNIII7-10 curve: R2=0.94; pFN curve: R2=0.96).   (B) ELISA 
using α5β1-mimetic HFN 7.1 antibody demonstrating accessibility differences on FNIII7-

10 and pFN-adsorbed Ti surfaces (hyperbolic curve fit, FNIII7-10 curve: R2=0.97; pFN 
curve: R2=0.95).   
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Figure 5.2. Titanium surfaces functionalized with bioactive integrin ligands 
display integrin specificity. (A) Bone marrow stromal cell adhesion (30 min) to 
adsorbed ligand surfaces is mediated by different integrin receptors as 
demonstrated by blocking antibodies in a cell centrifugation assay. Hashed line 
represents adhesion levels of cells on Blotto-blocked surfaces and no ligand 
(N=4).  Ti-serum: *p<0.02 vs. no antibody control; FNIII7-10:  

*p<0.008 vs. no 
antibody control. (B) Integrin binding analysis using a 
crosslinking/extraction/reversal procedure for stromal cells plated on ligand-
treated titanium surfaces of equimolar density (N=5). α5: **p<0.03 vs. pFN, 
**p<0.005 vs. Ti-serum; αv: **p<0.01 vs. pFN, **p<0.001 vs. FNIII7-10; #p<0.03 vs. 
FNIII7-10. 
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To examine early integrin-mediated signaling on these supports, we analyzed 

phosphorylation levels of important FAK tyrosines. FAK is an intracellular signaling 

molecule implicated in integrin-mediated signal transduction and is directly involved in 

the osteogenic differentiation pathway [188].  We assessed the phosphorylation of two 

important residues in FAK: tyrosine 397 (the autophosphorylation site of FAK) and 

tyrosine 576 (essential for maximal kinase activity) for cells plated on implant surfaces in 

the presence of integrin blocking antibodies. FAK phosphorylation levels for Y397 and 

Y576 were enhanced on FNIII7-10 surfaces compared to pFN-coated (p<0.01) or Ti-serum 

surfaces (p<0.01) (Figure 5.3 A,B). Furthermore, when rBMSCs were pre-incubated 

with blocking antibodies against β3, phosphorylation levels of Y397 and Y576 were 

significantly reduced compared to unblocked controls for cells adhering to either pFN-

coated or serum-coated Ti surfaces. Importantly, blocking antibodies against α5 reduced 

phosphorylation of FAK tyrosine 397 and 576 residues for cells only on FNIII7-10-coated 

surfaces; blocking α5 did not produce a significant effect for the other surfaces.  This data 

indicates that the specific integrins engaged during early adhesive events, primarily α5β1 

for FNIII7-10-coated surfaces and αvβ3 for pFN- and serum-coated surfaces, differentially 

modulate downstream signaling pathways (such as FAK activation) that may be a 

prerequisite for bone cell differentiation. 

We postulated that differences in integrin binding specificity and FAK activation 

modulate particular cell responses, including proliferation and expression of osteogenic 

markers.  Indeed, a short-term (16 h) proliferation assay based on BrdU incorporation 

Integrin-Specific Ti Coatings Modulate In Vitro Osteogenic Activities 
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demonstrated that cells on FNIII7-10-treated Ti surfaces exhibited increased proliferation 

rates compared to pFN-coated (p<0.05) or serum-treated Ti surfaces (p<0.004) (Figure 

5.3 C). In addition, cells displayed a significantly higher proliferation rate on pFN-coated 

surfaces over serum-treated Ti (p<0.009).  

 

 

 

 

 

 

 



www.manaraa.com

 116 

 

Figure 6.3.  Initial cell signaling (FAK activation) and proliferation on 
equimolar ligand-treated and serum-treated Ti surfaces is integrin-
dependent. (A) Relative levels of phospho-Y in FAK were quantified, in the 
presence or absence of integrin blocking antibodies prior to cell seeding (2 h), by 
Western blotting of cell lysates. Representative blots of each surface condition 
are shown (N=4). (B) Activation levels for Y397 and Y576 (normalized to total 
FAK) were higher on FNIII7-10-coated surfaces than pFN-treated and Ti-serum 
supports after 2 h cell adhesion (Y397: #p<0.01; Y576: #p<0.01). Integrin blocking 
antibodies selectively reduced FAK phosphorylation. Y397: *p<0.05 vs. no 
antibody control (Ti-serum), *p<0.01 vs. no antibody control (FNIII7-10); Y576: 
*p<0.02 vs. no antibody control (Ti-serum), *p<0.05 vs. no antibody control (pFN), 
*p<0.03 vs. no antibody control (FNIII7-10). (C) FNIII7-10-treated surfaces display 
higher proliferation rate (%BrdU + cells/total cells) than pFN-coated or Ti-serum 
surfaces (16 h adhesion) (FNIII7-10: **p<0.05 vs. pFN, **p<0.004 vs. Ti-serum). 
pFN-treated surfaces also enhanced proliferation rate over serum-treated Ti 
(#p<0.009) (N=5). 
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To examine if these integrin-specific adhesive and signaling cues influence 

osteoblastic differentiation, we used quantitative RT-PCR to monitor osteoblast-specific 

gene expression in 7 day rBMSC cultures. Expression levels of Runx2/Cbfa1, a 

transcription factor involved in early osteoblastic differentiation [163], were significantly 

elevated on FNIII7-10-treated surfaces compared to pFN (p<0.006) or serum-treated Ti 

(p<0.03) (Figure 5.4 A). Moreover, RT-PCR for late differentiation markers of 

osteoblastic differentiation, namely osteocalcin (OCN) and bone sialoprotein (BSP), 

revealed greater levels of gene expression on FNIII7-10 surfaces compared with either 

other surface (Figure 5.4 B). Notably, transcript levels were not statistically different 

between pFN- and serum-treated Ti surfaces for any of the three genes examined.  

 

      

Figure 5.4. FNIII7-10-treated surfaces enhance expression of osteoblast-
specific genes in bone marrow stromal cultures at 7 days post-seeding. 
Gene expression levels for: (A) Runx2 transcription factor (FNIII7-10: **p<0.006 vs. 
pFN, **p<0.03 vs. Ti-serum), (B) osteocalcin  (FNIII7-10: **p<0.02 vs. pFN, **p<0.01 
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vs. Ti-serum), and (C) bone sialoprotein (FNIII7-10: **p<0.01 vs. pFN, **p<0.02 vs. 
Ti-serum) (N=4). 

We next examined alkaline phosphatase (ALP) activity and calcium deposition as 

markers of osteoblastic differentiation. Cells on FNIII7-10-surfaces displayed a roughly 

two-fold increase in levels of both ALP activity and calcium-based mineral deposition 

compared to pFN-coated or serum-treated Ti (Figure 5.5 A,B). No differences were 

observed between pFN-treated titanium and serum-exposed Ti for ALP, but levels of 

calcium mineral levels were significantly higher on pFN surfaces compared to the serum-

treated Ti (p<0.04).  Moreover, when the mineralized nodules were visualized and 

quantified after 14 days post-cell seeding via von Kossa staining, FNIII7-10 surfaces 

supported the highest levels of nodule formation (p<0.04 vs. pFN; p<0.005 vs. Ti-serum), 

followed by pFN surfaces (p<0.03 vs. Ti-serum), and finally serum-treated Ti surfaces 

(Figure 5.5 C).  In addition, RGD peptide-incubated Ti surfaces displayed no significant 

differences in calcium incorporation or von Kossa staining (data not shown) from serum-

treated Ti surfaces; we attribute these results to the inadequate adsorption behavior of the 

RGD peptide on Ti.  Taken together, these results indicate that various biomolecular 

coatings of different integrin specificity elicit distinct osteoblastic responses in vitro. 

 

To evaluate the performance of these integrin-specific coatings in vivo, we 

quantified osseointegration of implants in a rat tibial cortical bone model using 

quantitative histomorphometry and pull-out mechanical testing (Figure 5.6 A,B) [49].  

Extensive, adjoining bone matrix was visible in histological sections around FNIII7-10- 

Integrin α5β1-Specific Bioactive Coatings Enhance Implant Osseointegration 
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treated Ti implants, while less substantial and more scattered areas of mineral were 

present around the pFN-treated and, especially, the uncoated Ti implants (Figure 5.6 C).   

 

 

 

Figure 5.5. Bone marrow stromal cells on FNIII7-10-treated surfaces exhibit 
higher levels of markers for osteoblastic differentiation after 7 days in 
culture and more advanced matrix mineralization than pFN-treated or 
serum-treated Ti (14d). (A) FNIII7-10-treated surfaces enhance alkaline phosphatase 
activity (N=4) at 7 days over pFN-treated or serum-treated Ti (FNIII7-10: 
**p<0.0001 vs. pFN, **p<0.0001 vs. Ti-serum), (B) Calcium content was increased 
at 14 days (N=4) on FNIII7-10-treated surfaces over pFN or serum-treated Ti 
(FNIII7-10: **p<0.008 vs. pFN, **p<0.0001 vs. Ti-serum). In addition, cells on pFN-
treated surfaces also exhibited a significant increase in Ca+2 content over 
unmodified, serum-treated Ti (#p<0.04), (C) Quantification (percent mineralized 
area) of von Kossa staining for mineral nodule formation (black) on ligand-treated 
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surfaces at 14 days. (FNIII7-10: **p<0.04 vs. pFN, **p<0.005 vs. Ti-serum; pFN: 
#p<0.03 vs. Ti-serum). 
 
 

 

Moreover, image quantification (8 fields/implant; N=4 implants per surface condition) to 

determine the level of bone-implant apposition demonstrated > 50% enhancement in 

bone apposition on FNIII7-10-treated implants compared to unmodified Ti (p<0.01) and 

over 25% compared to the pFN-treated Ti implants (p<0.03) (Figure 5.6 D). In addition, 

pFN-coated implants exhibited increased bone apposition over unmodified Ti (p<0.05).  

The overall quality and degree of osseointegration can be most directly assessed 

by measuring the mechanical strength of implant-bone interaction. Accordingly, 

functional mechanical testing may be a vital functional predictor of long-term implant 

success and lifetime [56]. Pull-out mechanical testing (N=7-9 implants per surface 

condition) revealed significantly higher mechanical fixation of the FNIII7-10-treated 

implants over both pFN-treated (85%, p<0.05) and unmodified Ti (290%, p<0.001), the 

current clinical standard. (Figure 5.6 E). Notably, implants coated with pFN also 

displayed higher fixation than the unmodified Ti implants (66%, p<0.04), although to a 

much lower extent than FNIII7-10-coated implants.  Collectively, these data corroborate in 

vitro results and demonstrate that a simple-to-apply bioactive coating using this α5β1 

integrin-specific ligand FNIII7-10 can significantly enhance implant integration into the 

host bone to a greater degree over coatings of incorporating native full-length pFN and 

even more potently over the current clinical standard (unmodified Ti). 
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Figure 5.6. Biomimetic ligand coatings targeting specific integrin receptors 
modulate in vivo implant osseointegration. (A) Schematic of titanium (clinical 
grade) implant design and dimensions. (B) Image of implants press fit into rat 
tibial metaphysis. Inset is a histological image of a slice of full implant and 
surrounding tissue (28 d post-implantation). (C) Representative histological 
sections at 4 weeks post-implantation showing bone (orange)-implant (black) 
contact (scale bar 0.2 mm). FNIII7-10-treated implant surfaces exhibited more 
contiguous bone tissue formation and connectivity compared to other surface 
treatment conditions. (D) Quantification of bone-implant contact area. Bone 
apposition was quantified from histological sections as the percentage of the 
implant’s circumference in direct contact with bone tissue. For each implant, 8 
fields were quantified, and multiple slices of the same implant were averaged (N=4 
implants per surface condition) (FNIII7-10: **p<0.03 vs. pFN, **p<0.01 vs. Ti-serum; 
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pFN: #p<0.05 vs. Ti-serum). (E) Functional osseointegration as determined by 
pull-out force. There were 7-9 different implants for each surface condition 
(FNIII7-10: **p<0.05 vs. pFN, **p<0.0001 vs. Ti-serum; pFN: #p<0.04 vs. Ti-serum. 

Discussion 

This study examined the ability of a clinically-translatable and simple 

biomolecular implant coating strategy to promote bone tissue healing and implant 

osseointegration. These coatings rely on the physisorption of FN-based ligands onto 

biomedical-grade titanium substrates. Given the functional importance of integrin 

receptors in modulating a variety of osteogenic pathways in vitro, promising surface 

coating strategies have sought to specifically promote integrin-mediated adhesion and 

signaling in a bone defect site. These strategies often employ functionalizing implant 

surfaces with adhesive ligands consisting of matrix proteins (e.g., FN, collagen) or 

peptides derived from important bone matrix molecules (e.g., RGD motif from FN). 

However, these approaches have only marginally improved bone formation.  Possible 

explanations for the corresponding lack of improvement in in vivo bone formation 

include non-specific responses to biological macromolecules with multiple bioactive 

motifs that may provide antagonistic signals (e.g., fibrinogen- and complement-binding 

activities in pFN) and insufficient pro-healing signaling due to lack of integrin 

specificity.  Here, we demonstrate that an integrin-specific biomolecular surface strategy, 

using simple passive adsorption on titanium substrates of a fragment of FN that primarily 

engages integrin α5β1, represents an effective approach for functional bone healing. This 

FN-mimetic orthopedic implant coating confers integrin-specific cues to stem-like cells 

that enhance in vitro adhesion, proliferation, and osteogenic signaling compared to the 

current clinical standard (unmodified Ti) as well as full-length FN-based coatings. These 

findings are consistent with results from an in vitro long-term differentiation study 



www.manaraa.com

 123 

conducted with function-perturbing β1 and β3 antibodies on osteoblast-like cells [17]. 

Moreover, this biomimetic treatment also promoted elevated expression of osteoblast-

specific genes, alkaline phosphatase activity, and matrix mineralization and calcification, 

indicative of a surface-dependent pro-osteoblastic differentiation effect.  Finally, as a 

clinical validation of this surface strategy, cortical bone implantation studies revealed 

greater contiguous bone contact area around FNIII7-10-treated titanium implants compared 

to plasma FN and uncoated titanium implants. Most importantly, these in vivo studies 

also demonstrated significant improvements in mechanical fixation and functional 

osseointegration of this FN-mimetic surface coating over full-length pFN-treated titanium 

implants (2-fold greater) and, notably, unmodified Ti implants (3-fold greater). Notably, 

this FNIII7-10-mediated enhancement of functional osseointegration may be potentially 

even greater since the FNIII7-10 implant surface density was below the saturation level 

demonstrated by SPR.  

We attribute the enhanced functional integration of the α5β1-specific FNIII7-10-

implant coatings to increased cell recruitment and osteoblastic differentiation at the cell-

material interface. Indeed, recent in vivo work suggests that extracellular matrix-coated 

implants may promote implant integration at early time points by modulating endogenous 

stromal cell chemotaxis to the implant surface very early (<3 days) after implantation 

[75].  Since endogenous bone cells can quickly remodel their underlying adherent surface 

[227],  potentially masking these integrin-specific surface cues, these surface cues may 

act very early to differentiate cells in the bone remodeling process post-implantation. In 

addition, surface-contacted cells may pass along osteogenic signals to more distant cell 
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populations via cell-cell contact or secreted soluble biological factors, further influencing 

the tissue healing over a more extensive spatial and temporal range.  

The differences in in vitro osteoblastic activities and in vivo bone formation 

between implants coated with FNIII7-10 and pFN were unexpected because these two 

ligands present the 7th-10th type III repeats of FN.  The recombinant FNIII7-10 fragment, 

however, isolates the biological activity to this integrin binding site, while the full pFN 

molecule contains additional sites that may affect the osteoblastic differentiation and 

bone healing responses.  In addition, our in vitro results with a receptor-mimetic antibody 

and integrin binding analyses suggest that the passively adsorbed recombinant fragment 

is more active than the full native protein (Fig 1).  This difference in biological activity 

could arise from difference in the structure/orientation of the adsorbed protein.  Finally, it 

is worthwhile to note that the recombinant fragment lacks significant post-translational 

modifications (e.g., glycosylation) compared to the native protein which could influence 

its biological activity. 

Importantly, this biomimetic surface approach utilizes a simple, point-of-care dip-

coating of FNIII7-10 to pre-sterilized Ti implants, a quick and versatile surface application 

conducted under physiological conditions that the surgeon can employ seconds before 

implantation. This single-step procedure, in turn, minimizes the chance of infection, 

reduces implant surface treatment variability, and minimizes cytotoxicity concerns 

inherent with covalent immobilization schemes, while maintaining the surgeon’s 

dexterity. The more robust osseointegration demonstrated for FNIII7-10-treated implants is 

expected to improve implant function and lifetime.  Moreover, this straightforward 

coating protocol can be applied to virtually any dental and orthopedic implant 
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application.  This FNIII7-10 coating retains its bioactivity when dip-coated on a variety of 

other non-titanium material surfaces with different surface topographies, including other 

metals, polymers, and ceramics. Furthermore, it may be advantageous to employ this 

biomimetic coating in conjunction with other implant surface technologies such as 

surface topography/roughness, calcium phosphate coatings, bone morphogenetic proteins, 

and anti-inflammatory agents, in order to potentiate healing responses [228,229]. 

Summary 

 α5β1-specific FNIII7-10 biomolecular coatings significantly enhance in vitro 

osteoblastic differentiation and implant osseointegration in a rat cortical bone model over 

full-length fibronectin coatings and the clinical orthopedic “gold standard”.   Importantly, 

this biomolecular coating relies on simple physisorption of bioactive ligands onto 

biomedical-grade titanium as a simple, clinically-translatable, implant 

biofunctionalization strategy to enhance tissue healing responses. 
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CHAPTER 6 

NANOSCALE CLUSTERING OF INTEGRIN-SPECIFIC LIGANDS 

MODULATES ADHESIVE ACTIVITIES AND IMPLANT 

OSSEOINTEGRATION 

 

Introduction 

Cell-biomaterial interactions are governed by cell adhesion via integrin receptors 

to surface ECM biomacromolecules [28,56,217,226].  Integrins are a widely expressed 

family of heterodimeric (αβ) transmembrane receptors that provide anchorage forces and 

trigger signals regulating cell survival, proliferation, and differentiation [16]. Integrin 

clustering is a critical step in the adhesive process by facilitating assembly of multiple 

cytoplasmic regulatory and structural proteins into critical supramolecular structures, 

termed focal adhesions [19,39,40]. These structures activate various intracellular 

signaling pathways that regulate gene and protein expression, migration, and 

differentiation and mediate strong adhesive forces [150]. Yamada and colleagues 

demonstrated that integrin binding (occupancy) and clustering can synergistically affect 

integrin-mediated cell function [230,231]. Monovalent ligand-integrin binding induced 

receptor redistribution but no cytoskeletal/signaling recruitment, whereas antibody-

induced integrin aggregation in turn only promoted FAK recruitment – both occupancy 

and aggregation together were required for robust focal adhesion formation and signaling.  

In order to investigate the effects of ligand clustering on adhesive processes and 

cell responses, studies have developed synthetic polymers presenting nanoscale clusters 
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of RGD ligands, albumin-RGD conjugates, and RGD-dendrimer systems [151-155]. 

Overall, these studies have demonstrated that ligand clustering at the nanoscale can play a 

large role in directing global cell migration, adhesion strengthening, spreading, and 

signaling. Furthermore, the relative nano-spacing of integrin-ligand interactions may be a 

critical element in this robust clustering effect on adhesive responses.  Recently, Spatz 

precisely patterned RGD ligands and showed that focal adhesion formation, cell 

adhesion, and migration required close integrin spacing (<73 nm) [233]. Moreover, 

Erickson used beads coated with oligomeric constructs presenting multiple copies of the 

cell adhesive domain of FN to demonstrate that only trimers and pentamers (as opposed 

to monomers and dimers) of FN promote rearward cell movement and functional 

cytoskeletal-integrin connections [156].  

While these studies have shed light on the importance of integrin clustering for 

adhesive processes, the application of these insights to designing functional biomaterials 

to control cell function and tissue responses has been thoroughly unexplored. Recent bio-

inspired biomaterial strategies have focused on functionalizing biomaterials with full-

length extracellular matrix proteins or short bioadhesive motifs, such as RGD – all with 

marginal success in promoting in vivo tissue healing [104-106].  Recent in vitro and in 

vivo work has demonstrated that integrin binding specificity (α5β1 vs. αVβ3) regulates 

osteoblastic and myoblastic differentiation [17].   We’ve recently used multiple ligand 

presentation platforms to demonstrate that biomaterial coatings specific for integrin 

receptors regulate in vitro progenitor differentiation, and in vivo bone issue healing and 

implant integration [103,108,111,233]. Engineering of biomaterials using clustered 

ligands, including cyclic RGD dendrimers and polyvalent ligands, have been successfully 
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applied for drug targeting and therapeutics, as well as imaging applications [234-237]. 

However, critical limitations of these strategies include: 1) these clustered ligands lack 

precise control over valency (rely on “statistical averages”) , and 2) suboptimal integrin 

specificity with these primarily RGD-based systems.  Given the importance of integrin 

specificity and integrin clustering individually to modulate key initial adhesive responses, 

we hypothesized that engineering materials that promote both of these parameters 

together may enhance integrin-mediated adhesive processes and, further, promote better 

implant osseointegration. In this study, we engineered biomaterial surfaces presenting 

well-defined densities of nano-clustered integrin-specific ligands, using the constructs 

designed by Erickson et al. that present one, three, or five copies of the α5β1-specific 

FNIII7-10 ligand [156]. We demonstrate that ligand clustering and integrin specificity 

synergistically modulate integrin binding, adhesion strength, and implant fixation in bone 

tissue.  

 

Materials and Methods 

Recombinant multimeric FNIII7-10 proteins (monomer, trimer, pentamer) 

presenting the central cell-binding domain of FN, were expressed as previously described 

[156]. Briefly, constructs of each multimer type were transformed into E.Coli 

BL21(DE3), and protein expressed by addition of 0.4 M IPTG at 6 hours. Cells were 

lysed with 0.1% TritonX-100 and 10mg/mL lysozyme. Lysate was centrifuged at 20,000 

g  for 15 minutes and the protein precipitated from the bacterial supernatant (40% for 

monomer, 30% for trimer, 20% for pentamer). Ammonium sulfate pellets were 

Multimer Preparation and Ligand Characterization 
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suspended in column buffer (0.02 TRIS, 0.1 NaCl). Protein solutions were run over a 

Sephacryl 500 column (Amersham-Pharmacia), and peak fractions were run over a 

resource Q column (Amersham-Pharmacia). Proteins eluted at 0.22 M NaCl (pentamer, 

trimer) through 0.27 M NaCl (monomer).  FNIII7-10 was expressed in E. coli and purified 

as previously described [108].  Purified proteins were run on SDS-Page gels (non-

reducing) showing a mixture of oligomers (trimer, pentamer). Bioactivity was assessed 

by ELISA with adsorbed multimer surfaces via an HFN 7.1 antibody, cell adhesion 

experiments, and integrin SPR experiments. 

Titanium (Ti) and gold (Au) metal was obtained from Kurt J. Lesker Company 

Part #EVMTI137EXE (Clairton, PA) as pellets of 99.97% pure titanium. For in vitro 

assays, thin films of this titanium (100 Å) and gold (200 Å) were deposited onto clean 

glass coverslips using an electron bean evaporator (2 x 10-6 Torr) at a deposition rate of 1 

Å/s. Slides were then immersed in a FNIII7-10, monomer, trimer, or pentamer protein 

solution at various coating concentrations in PBS for 30 min for SPR adsorption and cell 

adhesion experiments. Surfaces were subsequently blocked with 1% heat denatured 

bovine serum albumin (BSA).  

For the in vivo experiments, implants were machined from commercially pure, 

clinical-grade (grade 4) titanium rods (Titanium Industries, Inc., Cleveland OH) and 

poly(OEGMA) brushes grafted onto the surface as previously described [128]. 

Poly(OEGMA) brushes were polymerized by immersion into a solution of OEGMA (28.3 

mmol), CuBr (1.6 mmol), 2,2’-dipyridyl (2.8 mmol) in a 1:4 mixture of MeOH and H2O 

for 4 h. The resulting polymer brushes were 135 Å as determined by ellipsometry.  For 

ligand tethering, brushes were first incubated in 4-nitrophenyl chloroformate (1.4 mmol 
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in THF), which “activates” the brushes for subsequent ligand tethering by replacing a 

portion of the hydroxyl groups situated at the end of the polymer brushes with 

nitrophenyl chloroformate (NPC). The activated brushes were then incubated in multimer 

or FNIII7-10 solutions in PBS for 60 min to allow ligand tethering, and residual activated 

NPC sites were quenched in 20 mM glycine in PBS. Brush synthesis and 

functionalization reactions were verified by XPS (X-ray spectroscopy) and FTIR (Fourier 

Transform infrared spectroscopy).  Ligand surface density measurements were obtained 

via surface plasmon resonance (SPR) using a Biacore X instrument.  

 

NIH3T3 fibroblasts were used for initial bioactivity characterization and 

patterning experiments. MC3T3-E1 murine immature osteoblast-like cells (Riken Cell 

Bank, Hirosawa, Japan) were used principally for integrin binding and cell adhesion 

experiments because of their expression of multiple integrins, including αvβ3 and α5β1. 

MC3T3-E1 cells were maintained at 37 ˚C in α-MEM supplemented with 10% FBS and 

1% penicillin-streptomycin and passaged every 2-3 days via standard culture techniques 

prior to passage 8. Cells were split prior to 90% confluence, typically every 3  days. 

Cell Source and Culture 

 

To assess ligand accessibility to multimer-adsorbed surfaces, surface plasmon 

resonance measurements were conducted with soluble human α5β1 integrin using a 

Biacore X instrument (Biacore, Piscataway, NJ). Briefly, Au-coated SIA chips (Biacore), 

were primed with sterile DPBS, and the baseline allowed to stabilize at a flow rate of 15 

Binding Site Accessibility and Integrin Binding Assays 
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µl/min in DPBS.  Ligands were adsorbed for 30 min at a 8 µl/min flow rate, blocked with 

1% heat-denatured BSA for 10 min, and then were washed with PBS at 10 µl/min and the 

signal allowed to stabilize for 5 min thereafter to measure adsorbed protein levels.  

Equimolar multimer surface densities were used for all integrin binding SPR 

experiments. A 200 µg/mL solution of soluble α5β1was flowed over the multimer-coated 

chips at 20 µl/min for 10 min in integrin-activating conditions (PBS + 1mM Mn+2), the 

chips washed 3 times with PBS, and the baseline allowed to stabilize for 10 minutes. 

Resonance units (R.U.) were converted to surface density values (10 R.U. = 1 ng/cm2). 

Integrin binding levels (post 30 and 60 min adhesion) were assessed using a 

crosslinking/extraction/reversal procedure [172] on multimer-coated surfaces of 

equimolar densities of the FNIII7-10 binding site. Surfaces were prepared by incubating 

gold-coated wafers (100 Å Ti, 200 Å Au) with an alkanethiol SAM solution of 1 mM 

hexadecanethiol (CH3[CH2]15SH) (4 h).  Adhesive ligands in PBS were then incubated on 

the activated supports for 30 min and 1% heat-denatured BSA for 30 min. MC3T3-E1 

cells were incubated on surfaces in serum-free conditions (2mM Dextrose in PBS) for 30 

or 60 minutes. The integrin binding procedure uses DTSSP to specifically crosslink 

integrins bound to their ligand.  Cellular components are then extracted using detergent 

and protease inhibitors, and crosslinks are reversed and the once bound integrins are 

collected. Integrin levels were quantified by Western blotting using primary antibodies 

against α5 integrin (AB1928, Chemicon; 0.5 μg/mL), and αv integrin (AB1930, 

Chemicon; 0.5 μg/mL). Membranes were washed in TBS-Tween (20 mM Tris HCl pH 

7.6, 137 mM NaCl, 0.1% Tween 20) for 45 min and incubated in secondary antibody 

(biotin-conjugated anti-rabbit IgG, 1:20,000 dilution in Blotto) for 1 h at room 
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temperature while rocking.  Membranes were washed again in TBS-Tween for 45 min 

and incubated in a tertiary antibody (alkaline phosphatase-conjugated anti-biotin IgG, 

1:10,000 dilution in Blotto) for 1 h at room temperature while rocking.  After antibody 

incubation, membranes were washed in TBS-Tween for 45 min and immunoreactivity 

was detected using an ECF fluorescent substrate for 5-10 min.  Bands were visualized 

using a Fuji Image Analyzer and further quantified and analyzed using Adobe Photoshop 

software. 

 Micropatterned surfaces of 10 µm diameter circular adsorbed-multimer islands 

were created for a cell adhesion strength assay as previously described [150]. PDMS 

stamps were inked with a 1.0 mM hexadecanethiol (HDT) (in ethanol) solution, dried 

under nitrogen briefly, and brought into contact with clean gold-coated wafers for 15 

seconds (100 g weight). The unstamped, bare gold areas on the substrate were 

“backfilled” with a 1.0 mM solution of EG3 alkanethiol for at least 2 h. Substrates were 

then immersed in multimer protein solutions for 30 min at equal FNIII7-10 surface 

densities as previously measured by SPR measurements, blocked with 1% heat-denatured 

BSA, and incubated in PBS for 1 hr. MC3T3-E1 cells were seeded on micropatterned 

substrates in D-MEM at 200 cells/mm2 supplemented with 1% FBS (serum conditions) or 

1% BSA (serum-free conditions) for 2 hrs.  

Spinning Disk Adhesion Strength Assay 

 Cell adhesion strength was measured with a spinning disk apparatus [Garcia, 

97,98]. Cell-seeded substrates after 2 hrs were mounted on the device and spun for 5 

minutes at various spinning speeds in 2mM Dextrose in PBS. Cells were then fixed in 
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3.7% formaldehyde, 1% Triton X-100, and stained with ethidium homodimer. Cells were 

than counted with an in-house imaging analysis at various radial positions using a Nike 

TE300 with a motorized stage. Sixty fields/sample were analyzed and counts normalized 

to number of cells present in the center of the wafer disks. The fraction (f) of adherent 

cells was fit to a sigmoid curve [f=1/(1 + exp[b(τ- τ50)])] where τ50 is the shear stress for 

50% detachment and a direct measure of adhesion strength and “b” is the inflection slope.  

 Implantations into the tibiae of mature Sprague-Dawley male rats were conducted 

in accordance with an IACUC-approved protocol as described previously [49]. A day 

before implantation, Ti implants were soaked in de-ionized water for 30 minutes, and 

subsequently stripped of the existing oxide layer by submersion in 4% HF for 30 s. A 

new oxide layer was formed by incubation of implants in 35% HNO3.  This cleaning and 

re-growth of the oxide layer can be performed days before implantation as long as 

samples are subsequently kept clean. Poly(OEGMA) brushes were then grafted on clean 

Ti implants, and tethering of monomer, trimer, pentamer, or FNIII7-10 was conducted on 

brush-grafted implants as previously described. Equimolar FNIII7-10 densities were used 

(0.6 pmol/cm2) for all implantation studies. Prior to surgery, implants were incubated in a 

0.1% azide solution to sterilize implants. Tapered Ti implants treated with FNIII7-10 or the 

various multimers or unmodified Ti were press fit into the cortical defects. Two 2-mm 

diameter defects were drilled into the medial aspect of the proximal tibial metaphysis of 

each leg to achieve a total of four implants per animal. Implant locations (R/L leg, 

proximal/distal location) were randomized for each surface condition and a total of 27 

rats were used. Three distinct post-implantation timepoints were assessed for implant 

Implantation Procedure and Functional Analysis 
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function: 10 days, 28 days (4 wks), and 3 months. 10 day and 4 wk timepoints were 

assessed for bone apposition via histological analysis. 4 wk and 3 month timepoints were 

assessed for implant fixation via mechanical pull-out testing. Proximal rat tibiae were 

explanted and either fixed in neutral buffered formalin for histology or wrapped in PBS 

to maintain moisture for immediate mechanical testing. Formalin-fixed tibiae were 

embedded in poly(methyl methacrylate), dehydrated, and stained with Sanderson’s Rapid 

Bone StainTM and a van Gieson counterstain. This stained mineralized bone (yellow-

orange) and soft tissue and osteoid (blue-green). Bone apposition was quantified as the 

percentage of the implant’s surface in contact with the bone, and 8 fields/implant were 

quantified (N=3,4 implants per condition). Pull-out testing was performed to quantify 

implant mechanical fixation to surrounding bone tissue using an EnduraTEC Bose ELF 

3200. The ends of each excised tibia were secured using a customized holding apparatus 

and the exposed head of the implant attached to a load cell via a customized grip 

apparatus. Pre-loaded samples (< 2 N) were then subjected to a constant pull rate of 0.2 

N/sec. The pull-out force (N), parallel to the long axis of implant, was the maximum load 

achieved before implant detachment or failure. 

 Results are presented as mean ± standard error. Quantification of in vitro and in 

vivo experiments was performed on all samples used in each experiment. Results were 

analyzed by ANOVA in SYSTAT 8.0 (SPSS). If deemed significant, pairwise 

comparisons were performed using Tukey’s post hoc test and a confidence level of 95% 

was considered significant. In vitro assays were conducted in at least triplicate and 

replicated in two separate experiments. 

Statistics 
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Results 

 Recombinant integrin proteins presenting one, three, or five “heads” of FNIII7-10 

were expressed from multimeric constructs originally developed by Erickson et al [156]. 

Three DNA multimeric constructs were developed to encode for three distinct protein 

elements, each assembling post-expression into a specific multimeric supramolecular 

protein presenting one (monomer), three (trimer), or five (pentamer) FNIII7-10 ligands in a 

nano-clustered format. These recombinant constructs are schematically shown in Figure 

6.1 A. Each construct encodes for a single FNIII7-10 element at the N-terminus which is 

14 nm in length, separated by a TN 3-8 spacer element (21 nm in length, 6 domains from 

tenascin FNIII 3-8). For the trimer and pentamer constructs, a short coiled-coil segment is 

placed at the C-terminus end to promote self-assembly with protein strands with like 

coiled-coil regions. Specifically, the trimer constructs use a short segment from the 

cartilage matrix protein (CMP) that forms a three-stranded coiled-coil [239], while the 

pentamer constructs incorporate a segment from cartilage oligomeric matrix protein 

(COMP), which forms a five-stranded coil. Monomer constructs contained no coiled-coil 

region. A schematic of the fully-assembled pentamer protein is shown in Figure 6.1 B. 

The TN spacer arms are linked to the other elements via short amino acid segments 

which afford flexibility in movement. These flexible linkers allow cells to control to a 

large extent the spacing between integrin-multimer interactions in order to promote ideal 

spacing.  In addition, these TN spacers were optimized to remain non-adhesive, in effect 

conferring the only adhesive activity on each multimer to the FNIII7-10 element.  Once 

these constructs were transformed and protein strands expressed in E.Coli, multivalent 

FNIII7-10 Multimeric Ligand Purification and Assembly 
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proteins were purified using anion-exchange chromatography as previously described 

[156]. Purified multimers were run on non-reducing SDS-Page gels, stained for HFM 7.1, 

and proper multimer assembly assessed. Gels showed three bands for the pentamer 

samples (intense band at the expected assembly MW, weaker band at  3/5 the expected 

MW, and a weak band at 1/5 the expected MW), two bands for the trimers (at the 

expected MW, and 1/3 the MW), and one band for the monomers (data not shown). 

Although these gels demonstrate incomplete assembly for the trimer and pentamer, the 

most intense bands were present at the expected MW. Image quantification of these 

bands in ponceau stains showed >80% of the total band intensity were for the expected 

MW, and less than 20% for the “incomplete assembly” bands (data not shown). 

Moreover, previous characterization by electron microscopy demonstrated anywhere 

from 66% to nearly 100% of multimers possess the full complement of ligand “arms” and 

proper valency. Therefore, these results verify the large majority of multimers assembled 

correctly and with proper valency of ligand “arms”.  
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Figure 6.1. Multimeric integrin ligands with varying FNIII7-10 valency. (A) 
Multimeric constructs consisting of FNIII7-10 “head” at N-terminus, a “spacer arm” 
comprising the FN-III domains 3-8 from tenascin, and a distinct oligomerization 
sequence at the C-terminus (CMP for trimer, COMP for pentamer), (B) Schematic of 5-
“headed” multimeric ligand (pentamer) interacting with integrins with key lengths 
highlighted, (C) 1) Equimolar Multimer surface density, 2)  Equimolar FNIII7-10 “Head” 
surface density. 

 

 

 

 To initially assess multimer bioactivity, an ELISA was performed on adsorbed 

multimer surfaces (gold-coated polystyrene)  using a α5β1 receptor-mimetic antibody 

(HFN 7.1). Antibody binding levels were > 50x higher than background controls for each 

multimer surface, verifying that expressed multimers display bioactivity. In order to more 

stringently assess integrin binding behavior and ligand accessibility, surface plasmon 

Multivalent FN-mimetic Ligands Enhance Integrin-Specific Binding and Adhesion 
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resonance measurements were conducted whereby soluble human α5β1 was flowed over 

passively adsorbed multimeric ligand SPR chip surfaces. An equimolar multimer surface 

density was used  for each sample condition (Figure 6.1C-1) – therefore it was expected 

that trimer surfaces would bind three times the total integrin as monomer, etc. Total 

amount of α5β1 mass bound to each multimer-adsorbed surface was quantified in integrin-

activating conditions (PBS + 1mM Mn+2) after several washes to remove loosely bound, 

non-specifically adsorbed integrins. We observed linear increases in soluble receptor 

binding with valency of multimers (Figure 6.2 B) , indicating that binding sites in the 

multimeric proteins were accessible and, moreover, that the inter-ligand spacing was 

sufficient to support integrin binding without steric inhibition.  

 Next, we examined cell adhesive responses for surfaces coated with non-clustered 

monomers or nano-clustered pentamer ligands. For these subsequent experiments, we 

used equimolar FNIII7-10 surface densities, in order to isolate the effect of increasing the 

nano-clustering of integrin-specific ligands, rather than overall ligand density, on cell 

activities. This equimolar FNIII7-10 density (0.6 pmol/cm2) results in the total density of 

FNIII7-10 remaining constant, but the spacing between ligands is theoretically different 

(Figure 6.1C-2). We chose this density as it was close to the saturation for adsorbed 

monomer and about half saturation for the pentamer surface (Figure 6.2 A). This density 

value represents a maximum of roughly 20% of the total surface area taken up by 

monomer assuming a full footprint – most likely these ligands do not adsorb at maximum 

possible footprint area, and so the total surface area adsorbed is probably much less than 

20% at this molar density, i.e. not nearly a monolayer. Therefore, the total surface area 

taken up by monomer and pentamer at this molar density should be significantly less than 
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20%, and the ligand-ligand distance on each surface should be reasonable enough to 

uphold spatial clustering differences of each multimer surface. Integrin binding analyses 

were conducted on multimer-adsorbed SAMs of adhesive hexadecanethiol for MC3T3-

E1 cells. Total α5β1 binding was quantified at 30 min and 60 min post-seeding using an 

extraction/crosslinking/reversal technique [172]. This assay revealed that the pentameric 

construct enhanced α5β1 binding by 2.5x (p<0.003) after 30 min and 2x (p<0.05) after 60 

min compared to monomer-coated surfaces (Figure 6.2 C).   
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Figure 6.2. Nanoclustering integrin ligands augments integrin-specific binding. (A) 
Adsorbed surface densities as assessed by SPR of multimers on hexadecanethiol SAMs. 
(B) Integrin binding sites of multimers remain highly accessible and bioactive when 
randomly adsorbed on metal substrates. Soluble human α5β1 was flowed over gold 
substrates adsorbed with multimeric ligands at equimolar multimer density in an SPR, 
washed, and amount of adsorbed integrin quantified, (C) Greater FNIII7-10 “head” valency 
promotes more robust early integrin binding. MC3T3-E1 cells were seeded onto a SAM 
of hexadecanethiols adsorbed with equimolar FNIII7-10 surface densities (0.6 pmol/cm2) 
of multimers for 30 or 60 min, then relative bound α5β1 quantified using a 
crosslinking/extraction/reversal technique (Pentamer: 30 min, *p<0.03 vs. Monomer; 
60 min,*p<0.005 vs. Monomer, N=4). 
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We next measured the adhesive force of cells to the multimeric ligands using a 

hydrodynamic spinning disk assay [150]. Multimers were adsorbed to hexadecanethiol 

alkanethiols on gold using microcontact printing. This technique afforded control over 

adhesive area while maintaining a consistent cell shape. For the circular island 

configuration used, cells at the center experience negligible force, while increasing 

centripetal force is applied as the radial position increases outward from the center 

towards the edge of the sample. A detachment profile of fraction adhered vs. radial 

position for each sample was made, from which a robust measure of adhesion strength 

was quantified called τ50, or the shear stress which 50% of cells detach (Figure 6.3 A). 

Equimolar FNIII7-10 surface densities were used for monomer and pentamer surfaces, and 

MC3T3-E1 cells were allowed to adhere in serum-free (-LPA) and serum (+LPA) 

conditions for 2 hrs before detachment via spinning disk. Cells adhered to pentamer 

FNIII7-10 ligand surfaces exhibited a 30% enhancement in adhesion strength in serum-free 

conditions compared to the monomeric ligand surfaces (Figure 6.3 B). This enhancement 

was increased to 50% in serum conditions which contained LPA and soluble growth 

factors (Figure 6.3 B). Taken together, these in vitro results demonstrate our ability to 

engineer  multimeric integrin-specific ligands that retain a specific multivalency and 

indicates that ligand clustering modulates integrin binding and adhesive force.  
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Figure 6.3. Nano-clustered integrin-specific ligands enhance cell adhesive strength. 
(A) To investigate the effect of integrin ligand clustering on cell adhesive strength, a 
spinning disk assay was employed which applies a linear range of detachment forces on 
each sample to obtain a measure of adhesion strength for the entire cell population on the 
sample, the τ50. MC3T3-E1 cells were seeded on patterned adsorbed-multimer SAM 
substrates (equimolar FNIII7-10 density) and allowed to adhere for 2 hours in serum-free (-
LPA) and serum (+LPA) conditions. Samples were spun in a spinning disk apparatus for 
5 minutes, and adherent fraction quantified, (B) Nano-clustered integrin-specific ligands 
enhance adhesive strength in both serum-free and serum conditions over non-clustered 
ligands. (Pentamer: Serum-free, *p<0.04 vs. monomer; Serum,*p<0.002 vs. 
monomer, N=7). 
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We quantified osseointegration of implants in a rat tibia cortical bone model [49] 

to evaluate the in vivo effect of ligand clustering/spacing on tissue (bone) healing. This in 

vivo model provides a rigorous platform to evaluate implant coating function in a relevant 

orthopedic setting and has been used extensively in past studies [49,103]. Bioactive 

ligands were tethered to poly(OEGMA) brushes grafted onto clinical-grade titanium (Ti) 

to provide a robust, physiologically stable coating as previously verified (Figure 6.4 A) 

[103,111,128]. A major advantage of the poly(OEGMA) brush system described in this 

work is the ability to precisely control the presentation of tethered ligands.  Increases in 

the density of tethered multimer on brushes on Ti yielded increases in available bioactive 

ligand in vitro (Figure  6.4 B). Implant coatings examined were (i) unmodified 

poly(OEGMA) brushes, (ii) unmodified titanium (as a reference to the current clinical 

treatment), and brushes modified with either (iii) FNIII7-10,  (iv) monomer,  (v) trimer, or 

(vi) pentamer at equimolar FNIII7-10 surface densities (0.6 pmol/cm2) (Figure 6.4 B). 

Equimolar FNIII7-10 densities were used to afford direct comparison of ligand cluster 

size/organization on implant osseointegration. All implants were well-tolerated, and no 

complications were encountered during the course of the study.  Following 10 days, four 

weeks, and 12 weeks of implantation, the rat tibiae were harvested and analyzed for 

bone-implant contact (10d, 4 wks) by histomorphometry and implant mechanical fixation 

(4 wks, 12 wks) by pull-out testing.  

Multivalent FN-mimetic  Ligand Coatings Enhance Early and Longer-Term Implant 

Osseointegration 

At 10 days post-implantation, a number of samples were harvested for 

histomorpometrical analysis, but many implants were dislodged from the bone during the 
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explantation process. Of those that survived, histological sections revealed few samples 

with extensive and contiguous bone matrix around the periphery of the titanium implants 

(Figure 6.4 C).  However, the greatest amount of bone matrix was observed around 

pentamer-treated implants; less bone tissue was observed around the unmodified 

poly(OEGMA) brushes, and intermediate amounts around poly(OEGMA) brushes with 

tethered monomer and trimer ligands (Figure 6.4 C). The tissue present around all 

implants displayed a porous morphology (Figure 6.4 C).  Histomorphometric analysis of 

histological sections demonstrated no statistically significant differences in bone-implant 

contact area among all implant surface conditions due to small number of intact implants.  

Nonetheless, pentamer and trimer-coated implants displayed the greatest quantified bone-

implant contact area for than that for the unmodified poly(OEGMA) brushes and 

monomer Figure 6.4 D). It is likely that, at this early timepoint, the full cycle for tissue 

healing, bone remodeling, and new bone formation may not be completed enough to 

manifest in significant differences in observable new peri-implant mineral.  Moreover, 

the experimental forces that occur during tibial explantation may significantly disrupt the 

peri-implant architecture at this early timepoint.   

However, at 4 wks, extensive and contiguous bone matrix was observed around 

trimer and pentamer-functionalized implants; noticeably less matrix was found around 

unmodified Ti and unmodified poly(OEGMA) brush implants (Figure 6.5 A). Monomer-

treated implants also displayed fairly extensive matrix around the implant periphery, 

although not to the same extent as the trimer or pentamer, and the surrounding tissue was 

more porous. Histomorphometric analysis of histological sections demonstrated at least a  
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Figure 6.4. Nano-clustered ligand coatings targeting specific integrin 
receptors modulate early time-point (10 d) in vivo implant osseointegration. 
(A) Schematic of titanium (clinical grade) implant surface showing multimer-
tethered OEG brushes. (B) Tethered densities of monomer, trimer, and pentamer 
on poly(OEGMA) brushes on Ti. Surface density on brushes was controlled by 
varying coating concentration and equimolar FNIII7-10 density (0.6 pmol/cm2) was 
used for implantation studies, (C) Representative histological sections at 10 d post-
implantation showing bone (orange)-implant (black) contact (scale bar = 0.2 mm). 
Although most samples did not exhibit extensive peripheral bone formation at this 
timepoint, pentamer and trimer-treated implant surfaces exhibited more 
contiguous bone tissue formation and connectivity compared to other surface 
treatment conditions, (D) Quantification of bone-implant contact area showing 
individual sample values. Bone apposition was quantified from histological 
sections as the percentage of the implant’s circumference in direct contact with 
bone tissue. Multiple slices of the same implant were  averaged. 
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2.5-fold enhancement in bone-implant contact area for multimer-functionalized implants 

compared to the unmodified poly(OEGMA) brushes (p<0.009); Figure 6.5 B).  Notably, 

the bone-implant contact area for the pentamer group was significantly higher than that of 

the monomer-modified group (p<0.04). Importantly, the bone-implant contact area for 

the monomer and FNIII7-10-treated implants were nearly identical, indicating no loss of in 

vivo function for FNIII7-10 presented in this TN spacer format.  No evidence of multi-

nucleated cells, foreign body giant cells, or fibrous capsule was observed in any of the 

sections.  These findings demonstrate that nano-clustered presentation of  integrin-

specific ligands enhances implant integration compared to non-clustered ligand coatings. 

 Mechanical fixation was used as an outcome measure of functional 

osseointegration.  Pull-out mechanical testing at 4 wks revealed significantly higher 

mechanical fixation of the multimer-functionalized implants over unmodified 

poly(OEGMA) brushes (p<0.01; Figure 6.5 C), verifying the stability of the brush 

system used in this study. Increasing ligand clustering was a statistically significant trend 

resulting in increased mechanical fixation. Remarkably, at 12 wks, pentamer-

functionalized implants exhibited an even greater 2.4-fold enhancement in fixation over 

monomer-tethered implants (p<0.002) and approximately a 4-fold improvement 

compared to the unmodified poly(OEGMA) brush coating (p<0.001; Figure 6.5 C).  

While not statistically significant, trimer-functionalized implants displayed a 2-fold 

enhancement in fixation compared to monomer-treated as well as unmodified titanium 

implants. Taken together, these results indicate that control over ligand spacing, in 

conjunction with integrin specificity, can modulate bone healing and in vivo tissue 

healing responses. 
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Figure 6.5. Nano-clustered ligand coatings targeting specific integrin 
receptors enhance functional in vivo implant osseointegration at 4 and 12 
wks. (A) Representative histological sections at 4 weeks post-implantation 
showing bone (orange)-implant (black) contact (scale bar = 0.2 mm). (B) 
Quantification of bone-implant contact area. Pentamer-treated coatings enhanced 
bone-implant contact at 4 wks significantly over monomer and non-treated brush 
coatings (Pentamer: #p<0.04 vs. Monomer, *p<0.0001 vs. OEG; Trimer: 
*p<0.0001 vs. OEG; Monomer: *p<0.009 vs. OEG) (N=3,4 each condition). (C) 
Functional osseointegration as determined by pull-out force. Equivalent density 
of total FNIII7-10 binding sites were used. Dotted line is 12 wk Ti-serum condition. 
There were 4-8 different implants for each surface condition (Pentamer: #p<0.002 
vs. Monomer, P/T/M: ¥p<0.01 vs. OEG; P/T/M:  *p <0.01 vs. OEG). 
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Discussion 

 The development of novel biomaterials presenting biomimetic bioactive ligands 

for implantable devices is an emerging field that has yielded various success in vitro, but 

elicited marginal improvements in vivo. Recently, we demonstrated that bioactive 

coatings conferring high integrin specificity for α5β1 significantly enhance osteoblast 

differentiation and implant osseointegration and bone healing [103,108,111,233]. This 

macroscale parameter may be critical as activation and binding of specific integrin 

combinations can promote signaling pathways affecting a specific downstream cell 

phenotype. Aside from receptor specificity for ligands, many recent experimental in vitro 

studies using nanoscale clusters of RGD ligands on multifunctional polymers, 

microspheres, and dendrimers have shown that ligand organization clearly has a role in 

integrin clustering and initial cell adhesive responses, including migration, adhesion, and 

even cell growth [151-155]. Moreover, many natural ECM ligands in vivo exist as 

multivalent structures, including tenascin-C, polymerized fibers of FN and collagen, 

which drive strong integrin aggregation [16,240]. In the present work, we developed 

material surfaces functionalized with controlled densities of  multivalent constructs 

presenting exactly one, three, or five copies of the α5β1-specific FN fragment, FNIII7-10, 

in order to examine the nanoscale role of ligand clustering on integrin-specific binding, 

adhesion, and in vivo tissue responses to implanted devices. Past nano-clustered ligand 

designs relied on imprecise ligand cluster sizes and non-specific integrin ligands. A major 

strength of these multimeric constructs is the exclusive control over ligand valency 

(number of ligands in a cluster) and the directed targeting of a specific, osteogenic 

integrin receptor. Moreover, for in vivo experiments, the robust polymer brush strategy 
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employed offered stringent control in a physiological environment over ligand density 

and presentation [128]. Importantly, presentation of these precise multivalent integrin-

specific ligands on robust, physiologically stable brush coatings on titanium implants 

afforded an accurate in vivo comparison between ligands of different valency. Our results 

demonstrate that the nanospatial organization of bioadhesive ligands on material surfaces 

can directly modulate in vivo tissue healing, and provides mechanistic insights into how 

ligand organization at a nanoscale directs specific integrin-mediated adhesive responses. 

Indeed, bioactive surfaces presenting clusters of at least 5 integrin-specific ligands 

significantly enhanced in vivo implant integration after both 4 weeks and, even greater, 

after 12 weeks post-implantation. This functional effect may be partially resultant from 

enhanced adhesive responses of endogeneous progenitor cells at initial adhesion times on 

clustered ligand (N=5) surfaces, perhaps reflected in the in vitro increase of overall α5β1 

binding and adhesion strength for multiclustered ligands in this study.  

Previously, we attributed the enhanced bone formation of the α5β1-specific 

monovalent titanium coatings to increased osteoprogenitor cell recruitment and 

subsequent integrin-mediated differentiation. In this study, the considerable improvement 

in implant integration of the multivalent integrin-specific surface over the previously 

used monovalent integrin-specific FNIII7-10 surface is a unique and exciting finding; 

however, the molecular mechanisms underlying this functional effect are not presently 

fully clear, although many theoretical models and experimental studies offer relevant 

explanations. Maheshwari et al. showed that, for equivalent total density surfaces, RGD 

clusters of 9 ligands increased fibroblast adhesion by twofold [152]. In this study, we 

demonstrated that constructs presenting 5 integrin-specific ligands in close nanospacing 
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(pentamer) increased adhesion strength by 50% over unclustered, randomly spaced 

ligands. This experimental result is supported very closely by a number of force 

simulations and computational adhesive models simulating ligand/integrin clustering 

effects. Gallant et al. predicted using a simple force simulation based on spinning disk 

experimental data and a mechanical equilibrium analysis that integrin clustering could 

provide a 60% enhancement of adhesive force compared with uniformly distributed 

bonds [150]. Brinkerhoff developed a 2-D Monte Carlo model of the cell-surface 

interface and predicted a 35% increase in adhesive strength for 2-fold greater ligand 

cluster sizes due mainly to increases in integrin binding [241,242]. Two proposed 

mechanisms ascribing an increase in adhesion strength are increasing the affinity of 

receptor for ligand (affinity modulation) and an overall increase of integrin-ligand bonds. 

In a mathematical model of affinity modulation, receptors in clusters were assigned a 

greater affinity for ligands, so as ligand cluster size increased, receptors that randomly 

diffuse next to the cluster receive this higher affinity and bound tighter to ligands [243]. 

This effect was proposed to be due to integrin dimerization, or “partner switching” – the 

switching of bonds between neighboring integrins due to weak dimerization. The separate 

simulations by Brinkerhoff et al. and Dinner et al.  show that the amount of ligand 

binding and integrin clustering are increased significantly when ligands are organized in 

clusters, mainly due to integrin dimerization, which is believed to occur in vivo as well 

[242,244,245]. Likewise, using a two-state binding energy model, Irvine concluded that 

small changes in the binding energy due to localize integrin interactions caused by 

dimerization or initial clustering can significantly increase overall receptor binding to 

ligands. Our experimental results demonstrate an over 2-fold increase in α5β1 binding for 



www.manaraa.com

 151 

clustered (pentameric) ligands over monovalent ligands, which, according to adhesion 

models of avidity modulation, could easily manifest in the corresponding increase in 

adhesion strength. Hence, our results support several aspects of these aforementioned 

theoretical models and simulations. Furthermore, we’ve utilized a well-controlled 

experimental platform to test the functional significance of these theories in vivo through 

use of this precisely tailored multivalent integrin-specific construct and robust OEGMA 

brush presentation system – demonstrating a robust role of ligand clustering in regulating 

in vivo bone healing. 

A major finding of this study is the direct correlation of ligand valency with 

adhesive responses and in vivo healing, which may be of significance for bioactive 

material engineering. However, before directly applying these results towards design of 

novel biomimetic materials, a further discussion of two important design parameters - 

spacing between ligands within a cluster and cluster size - of ligand clustering is required. 

Most previous studies using nano-clustered ligands involve such large ranges of 

intracluster ligand spacings, few conclusions can be taken from them regarding optimal 

spacing range. Interestingly, Spatz alluded to a top spatial ceiling of 73 nm for optimal 

focal adhesion formation and adhesive function [232].  Brinkerhoff et al. simulated that 

ligand spacing less than 9 nm would result in negative steric effects, while ligand 

spacings over 21 nm would decrease the pro-clustering dimerization and binding energy 

effect previously discussed [242]. Notably, in this study, the multivalent constructs 

employ flexible linkers that allow the ligands to move within a compliant range of 10-48 

nm, yet the lengths of FNIII7-10 arms restricts the upper spacing ceiling toward an optimal 

range, according to these aforementioned experimental and simulation studies. Hence, 
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these bioactive constructs may afford the ideal theoretical spacing necessary for optimal 

integrin binding, clustering, and adhesion strength. Notably, our results justify that this 

particular range of ligand spacing can result in functional increases in adhesive responses 

and local tissue healing in vivo, further contributing to the our understanding of important 

design parameters which affect the rational design of biomimetic materials for directed 

cell and tissue response. Finally, Brinkerhoff et al. proposed an optimal cluster size of ~ 

9-16 ligands, while Irvine proposed an ideal cluster domain of 10 ligands to optimize 

steric and energy considerations [242,243]. Since this study used constructs from 1- 5 

ligands/cluster, and since 5 ligands/cluster provided the maximum functional effect, it 

may be prudent in future studies to design ligands that assemble even large cluster sizes. 

Again, the modular construct design used here lends ease to this process through simple 

replacement of the coiled-coil region with a coil peptide of increased valence via 

recombinant protein engineering. Recently, several small oligomerization sequences have 

been identified that bind 7 and even 9 other members, creating the distinct possibility of 

studying even larger cluster sizes with the same precise valency and ligand presentation 

schemes used in this study.  

Summary 

Using these multivalent integrin-specific constructs and a robust polymer brush 

system, we have provided an experimental link to further elucidate our knowledge of the 

roles of integrins and nanoscale ligand organization on initial and long-term cell and 

tissue responses. We have been able to demonstrate that nanoscale ligand organization 

can regulate osteoblast adhesive processes and modulate in vivo bone healing and implant 

osseointegration. This study identifies a robust material parameter, ligand nanoscale 
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organization, that may be particularly relevant for designing biomedical devices and 

tissue constructs for directed tissue responses and regenerative medicine applications.  
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CHAPTER 7 

SUMMARY AND FUTURE CONSIDERATIONS 

 

Introduction 

This study utilized integrin-specific ligands derived from the major ECM protein 

fibronectin to direct osteogenic differentiation of osteoblast-like cells and stromal cells, 

as demonstrated in Aim 1. Using robust ligand presentation systems that afforded control 

over ligand density and minimized non-specific protein adsorption, the functional effects 

of this integrin-specific ligand compared to RGD, FN, and RGD-based peptides were 

assessed. This study investigated not only the macroscale design parameter of ligand 

specificity for integrin receptors, but also the functional effects of nano-scale ligand 

spacing in unison with integrin specificity. Multimers of FNIII7-10 functionalized material 

surfaces directed mainly α5β1-mediated adhesion and promoted greater osteogenic 

signaling, gene expression, and mineralized matrix over FN-derived ligands which 

directed less robust α5β1 binding. This study investigated not only the macroscale design 

parameter of ligand specificity for integrin receptors, but also the adhesive and in vivo 

osteogenic effects of nano-scale ligand spacing in unison with integrin specificity. 

Multimers of these integrin-specific FNIII7-10 ligands promoted greater integrin-mediated 

adhesion strength and implant osseointegration than monovalent ligands. This study is 

significant because it examines both this macro-scale (integrin specificity) design 

parameter individually as well as in unison with this nano-scale parameter (ligand 

spacing) both in vitro and in vivo.  
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Discussion 

Since this research demonstrates that ECM-derived ligands that direct integrin 

binding may be a robust strategy to direct in vitro cell response, it may be relevant to 

apply this strategy to non-orthopedic tissues to explore possible ligands that direct 

binding of non-bone integrin combinations. There are many examples of integrins 

uniquely involved in healing and development of specific tissues and cell systems. For 

example, αMβ2 has been shown to mediate adhesion of macrophages on various surfaces 

[53,54]. Controlling the body’s response to foreign materials while promoting a specific 

tissue healing response is the “holy grail” of biomedical engineering research.  Material 

coatings functionalized with multiple integrin ligands that target two or more biological 

pathways may improve the ultimate in vivo efficacy of biomaterials. For instance, 

functionalizing implants with both osteogenic integrin-specific ligands and macrophage-

specific ligands that direct adhesion of a pro-healing population of macrophages may 

synergistically create a more powerful healing microenvironment. The research in Aim 1 

establishes a number of ligand presentation platforms that effectively allow accurate 

comparison of functional effects between different integrin ligand-functionalized surfaces 

for virtually any cell system. Growth factor receptors have also been demonstrated to 

actively associate with activated integrins to partially direct integrin-mediated signaling, 

cytoskeletal arrangement, and cell proliferation [246]. Previous studies have focused 

solely on engineering RGD (non-integrin specific) and GF ligands in order to direct cell 

response [152]. Engineering controlled mixed ligand surfaces of particular growth factor 

receptors and integrin-specific ligands would not only contribute to our understanding of 

Fine-Tuning Integrin Specificity 
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receptor-driven function, but may augment directed cell and tissue healing over single 

ligand surfaces.  

 Moreover, improving the integrin specificity of biomimetic ligands may be an 

effective way to improve the benefits of this material strategy. Currently, scale-up, 

immunogenic, and non-specific binding concerns limit the widespread clinical 

applicability of this integrin-specific surface strategy. This study demonstrated several 

processing and purification advantages of using a recombinant approach to engineering 

these ligands. One important advantage not thoroughly utilized in this research is the 

ability to conduct structure-function studies to improve integrin-affinity and specificity, 

reduce ligand size (and hence afford greater surface density), and allow other tethering 

schemes, as well as contribute to fundamental research on ligand-receptor binding 

mechanisms. Using site-directed mutagenesis to alter various residues on the FN9 and 

FN10 portion of the FNIII7-10, including flanking sequences to the PHSRN and RGD sites 

would give us more precise insight into αvβ3 and α5β1-ligand binding and cellular effects 

of varying binding specificity and affinity.  

 As recent studies have also indicated that physical surface properties may affect 

integrin-mediated adhesion and signaling, further studies implementing this integrin 

specific strategy in unison with surfaces of varying roughness and nanotopographies may 

be beneficial. Keselowsky et al. recently demonstrated that surfaces of increasing micro-

scale roughness promoted greater α5β1 binding and FAK phosphorylation in osteoblasts 

on FN-adsorbed surfaces [70]. We showed in this study that, on relatively smooth 

titanium surfaces, physisorbed FN promoted reduced α5β1 binding, signaling, and 

osteogenic differentiation than FNIII7-10 adsorbed surfaces at equimolar ligand densities. 
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Moreover, since saturated surfaces of adsorbed FNIII7-10 result in greater molar densities 

than adsorbed FN, there may be a robust synergistic effect between surface roughness 

and integrin-specific ligands given that rougher surfaces have greater surface areas than 

smooth surfaces. Surfaces of varying linear  nanotopographies (FN-adsorbed) have also 

been recently exhibited to directly modulate myoblast differentiation [247]. It is not a 

stretch to hypothesize that using FNIII7-10 and other integrin-specific ligands on these 

surfaces may produce an even more enhanced cellular effect.  

 

In addition to examining integrin specificity, this research demonstrates that 

ligand clustering can modulate both in vitro and in vivo cell and bone tissue responses. 

However, the molecular mechanisms behind these global responses are unknown. Careful 

examination at the protein and even molecular level of why this ligand clustering effect is 

so robust is necessary for our fundamental understanding of material-cell interactions as 

well as to potentially improve the efficacy of these surfaces in the future. Functionalizing 

OEG brushes with these multimers would afford in vitro characterization of the 

functional cellular effects of integrin-specific ligand clustering. Integrin subunit-blocking 

antibodies and integrin immunostaining would be necessary to determine the extent of 

integrin-mediated adhesion and downstream cell function as a result of ligand valency. 

Extent of integrin clustering, which is believed to be the main mechanism responsible for 

the enhanced functional effect, could be estimated by conducting integrin binding 

analysis and focal adhesion immunostaining side-by-side, and counting FA number and 

size for each surface. It would have to be assumed that most bound integrins at later 

Exploring Clustered Ligand Presentation 
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timepoints are involved in these FA clusters and the staining would have to clearly 

indicate individual FAs. Analyzing the integrin clustering and subsequent signaling 

effects of multimer-functionalized substrates is critical to our understanding of how these 

material design parameters can be exploited for directed cell and tissue responses.  

 

Importantly, this study demonstrates that these integrin-specific coatings 

significantly enhance implant osseointegration and peri-implant bone formation, and this 

effect can be further heightened by introducing clustered ligand presentation, and finally 

that that the density of ligand itself is an important design parameter affecting tissue 

healing response (Aim 2 + 3). While this is a clinically exciting result and relevant to 

biomaterial engineering for directed tissue response, the exact in vivo mechanism 

governing these results is unclear. In fact, few biomaterial-related studies have revealed 

any great insight into how ECM-inspired materials affect physiological both the cellular 

response and overall tissue-level  healing and remodeling. An experimentally supported 

mechanism is that mesenchymal cells adhere and proliferate on integrin-specific surfaces, 

and attract distinct populations of osteoprogenitors to the area by secreting chemotactic 

factors, or creating a favorable osteogenic microenvironment [75]. This mechanism has 

been partially supported through FN-adsorbed implant studies showing a chemoattractive 

in vivo effect at early times post-implantation (< 3 days) [75]. Furthermore, a potent 

chemoattractive protein for mouse calvaria, but not monocytes (osteoclast precursors) 

was found in demineralized bone matrix [249]. Exploring the in vivo mechanism of these 

integrin-specific surfaces is critical to our understanding of how designed materials affect 

Elucidating In Vivo and In Vitro Mechanisms 
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tissue function, at both a cellular and tissue level. Elucidating these mechanisms is not an 

easy task, but can be accomplished through various imaging, material, genetic, and in 

vitro experiments.  

 Preliminary in vitro experiments examining possible osteogenic/chemoattractive 

soluble factors secreted by cells on distinct integrin-specific surfaces provide initial 

insight into this mechanism. Stromal cells were seeded on separate surfaces of equimolar 

FNIII7-10 and RGD on mixed SAMs, and, after a 3d incubation, media was transferred to 

dishes of the different surface for 3 more days before quantification of alkaline 

phosphatase activity. Cells on RGD surfaces supplemented at 3d by FNIII7-10-incubated 

media displayed higher 7d activity than RGD surfaces incubated in the same media for 

the entire 7 days, indicating that factors in the FNIII7-10 cell media may promote a more 

robust osteogenic response than RGD cell media (unpublished) (Figure 7.1).  
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Figure 7.1. Preliminary paracrine experiment examining osteogenic role of media 
soluble factors of cells on different integrin-specific surfaces. A) Stromal cells on 
equimolar (0.2 pmol/cm2) densities of FNIII7-10 or RGD (mixed SAMs) were seeded for 3 
days,  media exchanged, and alkaline phosphatase activity assessed at 7 d. B) Media from 
cells on FNIII7-10 surfaces promoted greater activity for cells on RGD surfaces than no 
media exchange.  
 

 

 

 

This initial experiment lays the groundwork for more detailed experiments that 

could examine various surface densities, mixed ligands, time points, and cell densities 

that may all contribute to this potential soluble osteogenic effect from cells adhered on 

integrin-specific substrates. Further experiments would also need to examine co-culture 

effects (migration, differentiation) using Boyden chamber assays and subsequent testing 

of media for chemotactic and osteogenic factors via protein chips and mass spectrometry. 

Integrin subunit-blocking experiments would demonstrate if any significant soluble effect 

detected is integrin-mediated. It would the be interesting to see if the factors found in 



www.manaraa.com

 161 

abundance could be formulated into an artificial media, or if FNIII7-10 cell media alone 

could promote differentiation of cells on normally non-orthopedic materials, such as 

polystyrene, in order to isolate the relative roles of physical adhesion and soluble factor 

environment on maintaining directed cell function. The time-dependence of any 

functional effects would also need to be closely examined. Furthermore, the impact of 

cell-cell communication may be studied using micro- and nano-patterning techniques that 

afford control over cellular contact with other cells. It is possible to even pattern islands 

of different ligands on the same surface to investigate cell-cell, and paracrine factor 

effects while controlling cell shape and area [238,249].  

The idea of “memory” in cell adhesion is a pertinent but thoroughly 

uninvestigated notion that may be particularly relevant to the in vivo success of this 

surface strategy. The time-dependent exposure of cells to different integrin-specific 

ligand and densities may be a critical part of the in vivo mechanism, since most serum 

and blood-borne proteins that adsorb to implant surfaces are primarily αvβ3-specific (VN, 

FN, etc.) and may replace or degrade α5β1-specific ligands on implants soon after 

placement in the body [3,4].  Studying the time-dependent effect of distinct ligand 

exposure on the same cell population in vitro may be important to understanding in vivo 

ligand-cell interactions. Recently, del Campo et al. designed a caged cyclo(RGD) peptide 

which is UV-phototriggerable and noon-bioactive in the dark [250]. However, exposure 

to 365 nm light cleaves the cage and renders the peptide bioactive. We have engineered 

mixed SAM surfaces with this caged RGD peptide in controlled densities, and 

demonstrated our ability to control cell adhesion, ligand density at different post-cell 

seeding time points, and a functional effect of time-dependent exposure of RGD density 
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(“adhesive temporal threshold”) on myoblast proliferation and differentiation (Figure 

7.2). We can further use this caged ligand system to study time-dependent effects of 

integrin specificity on cells to model potential in vivo mechanisms in a controlled in vitro 

setting. Mixed ligand surfaces of FNIII7-10 and caged RGD would be prepared, and 

stromal cells seeded initially exposed to FNIII7-10, but at various timepoints exposed to 

uncaged RGD as well. Further experiments could include density-dependent effects on 

signaling and differentiation (high FNIII7-10, low RGD; low FNIII7-10, high RGD, etc.). 

This system could possibly be further applied in vivo in a hydrogel-like subcutaneous 

mouse model, with varying time-dependent exposures to RGD on mixed ligand FNIII7-10 

gels.  

Many of these fundamental in vitro experiments cannot be recapitulated in vivo, 

but alternate experiments can be performed to further illuminate implant-tissue 

mechanisms. Tissue-specific integrin knockout mice have been proposed using the Cre-

Lox promoter system that may be able to reduce or eliminate β1 or β3 only in isolated 

bone tissue. Integrin-specific ligand implants can be placed in these mice and the in vivo 

role of integrin-mediated tissue healing on these surfaces can be more closely examined 

via pull-out testing and histomorphometric analysis.  
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Figure 7.2. Caged cyclo(RGD) peptide system for assessing time-dependent effect of 
ligand exposure on cell function. A) Schematic of caged cyclo(RGD) on mixed SAMs 
for controlled peptide density and presentation, B) Caged RGD surfaces remain non-
adhesive after 3d incubation in serum, and exposure to UV light renders surface adhesive, 
C) Time-dependent uncaging and exposure to high RGD density modulates myoblast 
differentiation, as assessed by sarcomeric myosin staining. Each surface contains a 
“basal” level of tethered linear RGD (0.8 pmol/cm2) to maintain adhesion throughout the 
experiment. “Uncaged” surfaces exhibit “high” density of approximately 3.6 pmol/cm2 
RGD.  
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Although 2-D coatings have been primarily used in this study, an abundance of 

clinical applications rely on 3-D scaffolds and porous coatings for orthopedic healing and 

regeneration. Recent studies have suggested that cells behave quite differently in 3-D 

environments than 2-D [251]. Examination of these integrin-specific surfaces in 3-D 

physical environments would be an important initial step toward application of this 

integrin-specific strategy for these tissue regenerative purposes.  These ligands could be 

tethered in 3-D hydrogels using standard peptide tethering chemistries (such as 

EDC/NHS) or SANPAH, or even ‘click’ chemistries. The examination of the 

osteoinductive effect of functionalizing these gels with ligands of varying integrin 

specificity could be tested fairly easily in vitro with migration studies and confocal 

immunostaining.  Implanting into subcutaneous animal models would be a controlled and 

effective way of examining the in vivo impact of 3-D presentation of these ligands. 

Moreover, as BMP has been shown to augment osteoinductivity, fashioning these gels 

with soluble BMP either in drug-eluting microcarriers or bioactively tethered may 

improve the overall efficacy of this material strategy [252]. Utilizing these integrin-

specific ligands in unison with other osteogenic factors may indeed be a useful strategy to 

study the fundamental interaction between different signaling pathways both in vitro and 

in vivo. Another reasonable direction is the creation of even more long-lasting and 

effective tissue interfaces. Recently, Phillips et al. formed in vitro fibrous-bone interfaces 

by seeding scaffolds with a spatial density gradient of Runx2-encoding retrovirus [253].  

It may be possible to use dip-coating of FNIII7-10-related ligands to create reverse 

gradients  on virus-gradient surfaces to encourage more precisely graded bone-cartilage 

Expanding Beyond 2D: Three-Dimensional Cell-Material Interactions 
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interfaces. Since we demonstrated that bone formation in vivo was related to ligand 

density, coating in different concentrations of FNIII7-10 may produce an even more 

precisely graded interfaces.  

 

Finally, elucidating how stable these integrin-specific ligand surfaces actually are 

in the body is another critical fundamental question that remains unanswered. The OEG 

brushes used in this study are very robust in vitro in physiological environmental 

conditions, but the time-dependent in vivo stability is unknown. Moreover, all cells will 

begin remodeling their surfaces very quickly (within 48 hours) in vitro. Therefore, how 

long endogeneous cells actually interact with these ligand-functionalized surfaces, and 

how long these surfaces remain integrin-specific, are important issues that would 

contribute greatly to our mechanistic insight. To investigate, FNIII7-10 ligands can be 

either genetically modified via protein cloning to express physiologically stable 

fluorescent markers (GFP), or chemically altered to tether imaging markers, possible 

even including quantum dots. The degradation of surfaces and ligands can be visualized 

and monitored in vivo to obtain a greater idea of the time-dependent stability of these 

surfaces. Biotin-tethered ligands can only be quantified after explantation, which may 

shear off much of the protein layer and give inaccurate measurements.  

Assessing Clinical Coating Stability 

Notably, this integrin-directed response was still elevated on adsorbed integrin 

ligand substrates, which implies that this integrin-mediated mechanism may be less 

dependent on the specific presentation and orientation of exposed ligands. Moreover, the 

robust nature of this integrin-central surface strategy is further emphasized by the success 
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of simple dip-coated FNIII7-10 implants in promoting bone formation and implant 

osseointegration in a relevant animal model, as shown previously. This thesis highlights 

the robust effect of both integrin specificity and ligand clustering on in vitro cellular 

adhesion, signaling, differentiation, and, more relevant to clinical applications, bone 

healing. However, as mentioned in this chapter, much work needs to be performed to 

elucidate the molecular mechanisms in vivo that lead to this functional effect.  

 

Summary 

These studies would contribute greatly to our fundamental understanding of how 

materials can be engineered via biomimetic strategies to direct cell and tissue responses 

including osteogenic differentiation and bone remodeling and healing. Moreover, this 

thesis lays out the groundwork for studies that may ultimately be able to apply these 

unique biomimetic surface strategies to non-orthopedic applications and varied material 

constructs.  
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APPENDIX A 

PROTOCOLS 

 

 Biotinylated Protein Purification Protocol 

 

A. Cell Lysis 

Cell Lysis Buffer (CLB) 

i.) 50 mM Tris-HCl (pH=7.5) 

ii.) 50 mM NaCl 

iii.) 5% glycerol 

iv.) all in water 

v.) example: 

i. 785 MG TRIS-HCL 

ii. 290 MG NACL 

iii. 5 ML GLYCEROL 

iv. 95 ML WATER 

2. Resuspend cells fully in CLB @ 10 mL/mg cell paste @ 4 C. 

3. Add lysozyme @ 1 mg/mL at 4 C or room temp if protein is 

stable ~ stir for 20 min 

4. Add sodium deoxycholate @ 1 mg/mL ~ 10 minutes stirring 

(solution may begin to get more viscous). 

5. Add DNAase I to reduce viscosity @ 1 mg/50 mL ~ 15 minutes 

mixing. 
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6. Centrifuge lysate @ 10000 g ~ 20 minutes. Save supernatant, 

could be slightly brownish but should be fairly transparent.  

B. Affinity-Chromatography Purification (Biotin) 

a. We use Bio-Rad pump system, but you can use a simple protein 

purification pump system: just a pump by which the flow rate can be 

controlled (from 0.3 mL/mL to about 10 mL/min is really all you need 

b. For biotinylated proteins we use the Ultralink immobilized monomeric 

avidin (prod# 53146) from Pierce ( 5 mL). It is in a slurry form. You also 

need some type of plastic column, preferably around 10-15 mL or so. 

These are available everywhere, and they are cheap and come in all sizes. 

The slurry just needs to be poured carefully into the column a little at a 

time and drained (maintaining a bit of liquid of course – don’t let column 

ever dry out, even in fridge) so that few air bubbles occur in the packed 

column of avidin gel.  

c. PROTOCOL: 

1. Force protein solution through 0.45 um filter to get rid of 

residual cell sludge and bacteria.  

2. Following “Ultralink Immobilized Avidin” protocol pretty 

closely (should be online on the product page). 

1. Make buffers: 

i.) ELUTION: 100 mL PBS + 50 mg D-biotin 

ii.) REGEN: 100 mL DiH20 + 750 mg glycine  

2. Equilibrate column to room temp (normally store in 4 C) 



www.manaraa.com

 169 

3. Hook up column to tubing and pump system.  

4. Flow PBS @ 1.5 mL/min through the system ~ 10 minutes. 

5. Wash system with ELUTION buffer @ 1.5 mL/min ~ 10 

minutes. Will elute any residue biotin from last time you 

used column 

6. Wash system with REGEN buffer @ 1.5 mL/min ~ 10 

minutes. Regenerates column. 

7. Wash system with PBS @ 3 mL/min ~ 10 minutes. Zero 

spec at this point. 

8. Flow protein solution through system at 0.5 mL/min until 

all the way through. Spec should read very high throughout 

this process as protein solution should be pretty 

concentrated. Flow rate is low because you want the 

column to catch as much of your protein as possible.  

9. After all protein through, wash system with PBS @ 3 

mL/min and monitor spec until goes to baseline or near 

baseline.  

10. Apply elution buffer (concentrated biotin will outcompete 

biotinylated protein for avidin and make the protein “fall 

off” the column @ 2 mL/min and collect fractions as spec 

reading rises. Readings should peak well above baseline, 

not as high as when the protein solution was flowing 
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through most likely, but dramatically higher. Collect 

fraction until the readings return close to baseline.  

11. Wash column with REGEN buffer @ 2 mL/min – this also 

will release all the rest of the column clung biotinylated 

protein, but will be less pure than the ELUTION buffer.  

12. Was column with PBS + 0.01% azide for 20 minutes and 

wrap column in parafilm with liquid still in the column and 

store in 4 C.  

13. You can spec the collected fractions, and/or concentrate 

them more in 30 kDA Microcon centrifuge filters.  

14. Run a ponceau and western blot to ascertain purity and 

quality of product and to make sure you actually got what 

you wanted. We also do an ELISA because it is easy to do 

as well (with just adsorbed protein and an anti-biotin and 

anti-FN antibody).  

 

Make sure little leakage occurs in the system, and that the tubing is hooked up tight so 

that the flow rate is stable. If input is 300 mg of protein solution (3mg/mL, maybe 100 

mL) from cell lysate ~ expect to get out about 3-4 mg of protein. Purity should be above 

95% . 
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Integrin Blocking FAK Phosphorylation  
 
 
1.    Incubate cells in serum-free 2mM PBS-Dextrose for 35 minutes, while adding 

integrin blocking antibodies (α5, α5  @ 30:1).  
 
2.    Seed cells at 90,000 cells/well (optimal 200,000 cells/well) for 6-well plate. 
 
3.    Adhere for 2 hrs. 
 
4.    Wash cells 1X PBS gently, and incubate for 20 min in cold RIPA buffer (w/ 350 

µg/mL PMSF, 10 ug/mL leupeptin and aprotonin) – 200-300 µL/well. 
 
5.    Scrape cells and pipette up/down 25 times with needle. 
 
6.    Run BCA assay. 
 
7.    Boil samples with 6X sample buffer for 10 minutes. 
 
8.    Run western blot. 
 
9.    Antibodies: anti-FAK (1ug/mL); anti-FAK397 (0.35 µg/mL); anti-FAK 576 (0.5 

µg/mL); anti-FAK 861 (1 µg/mL).  
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Peptide Tethering to OEG/NPC Brushes 

 

1. Place slides in individual wells (6-well plate for 22X22 slides). 

2. Place OEG brushes in PBS for 30-45 minutes to form water layer. 

3. Make peptide solution in PBS (20 µg/mL for GFOGER) – meaning 1 mg/20 mL 

PBS, etc. 

4. Incubate NPC slides in peptide solution (in PBS) for 30 minutes. Put 800 µl of 

solution into each well and place each slide upside down so floating in solution. 

5. After 30 minutes, turn over NPC slides to right side up. 

6. Aspirate PBS and peptide solution from wells. 

7. Rinse all wells with PBS – 2X. 

8. Incubate all wells in 20 mM Glycine in PBS for 5 minutes (2 mL/well). 

9. Aspirate BSA and add PBS (3-4 mL/well). 

10. Rinse all wells with PBS – 2X. 

11. PURELY OPTIONAL: Add 1% heat-denatured BSA in PBS to all wells (2 

mL/well) 

12. Aspirate BSA and add PBS (3-4 mL/well). 

13. Incubate in PBS at room temp overnight to dislodge non-specifically adsorbed 

peptide. 
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APPENDIX B 

MICROPATTERNED SURFACES WITH CONTROLLED LIGAND 

TETHERING 

 

Introduction 

Patterning of ligands with high degrees of density and spatial control has become 

a powerful approach for applications in tissue engineering [254-256], studying cell-

surface interactions [257-259], cell-culture analogues and substrates [260,261], and both 

cell-based and ligand-based biosensors [262-264]. For example, precise spatial control of 

cell position on 2-D biosensors is vital to the performance of the living circuitry [264].   

Furthermore, effective manipulation of ligand and cell placement may greatly assist in 

basic studies of cell function on biomaterials. Recent studies suggest that spatial 

extracellular matrix cues, including size, geometry, and surface ligand density of 

adhesive regions, significantly regulate downstream cell responses [258,265-269]. 

Moreover, creation of controlled gradients of different ligands and cell types may be may 

assist in the design of cell culture substrates to direct specific cell function, biomaterials 

for assembly of multifunctional tissues, or even interfaces to enhance in vivo tissue 

healing [270,271].  

 

 

 
*Modified from 
T.A. Petrie, B.T. Stanley, A.J. García, Micropatterned Surfaces with Controlled Ligand Tethering. J 
Biomed Mater Res A; 2008, In Press. 
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In order to pattern ligand islands of prescribed shape, size, and spatial position on 

substrates on the cellular scale, a variety of direct and soft lithographic techniques have  

recently been employed – the most widely used being microcontact printing 

[259,264,272-274]. Microcontact printing (μ-CP) is an easily reproducible, cost effective, 

simple, and versatile technique to create 2-dimensional patterns of ligand “islands” of 

specific shape, size, and substrate spatial locale [275-279]. Current strategies have 

utilized μ-CP patterns of “adhesive” hydrophobic self-assembled monolayers (SAMs) of 

alkanethiolates, typically methyl-terminated, on gold substrates, backfilled with 

“nonadhesive” SAMs of ethylene-glycol (EG3)-terminated alkanethiolates [275,280,281]. 

For cell adhesion applications, these islands can adsorb adhesive proteins to promote cell 

adhesion. Moreover, the size and geometry of these adhesive islands will determine the 

spatial pattern of adhered cells on the surface. Alternatively, other strategies have focused 

on using μ-CP to pattern proteins directly onto substrates, relying on protein 

physisorption to synthetic materials to create localized adhesive regions on a substrate 

[282,283].  

Nonetheless, there are significant limitations associated with using this μ-CP 

technique with ligand adsorption-dependent alkanethiol SAMs. Since ligands are not 

covalently immobilized on patterns, but rather passively adsorbed, the ability to 

implement large ranges of well-controlled ligand density on each pattern is considerably 

limited.  Recently, mixed SAMs of alkanethiolates on gold, consisting of a mixture of 

reactive carboxylic acid-terminated (EG6-COOH) and nonfouling tri(ethylene glycol)-

terminated  (EG3) alkanethiolates, have exhibited the ability to immobilize controlled 

surface densities of tethered ligands within a protein-adsorption resistant background 
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[170,281,284]. The ligand is immobilized to the surface by peptide bond-forming 

reactions between the active esters on the alkanethiol and the terminal amino group of the 

ligand, promoting a stable covalent tethering to the SAM surface. 

Here, we have optimized a technique that combines the advantages of mixed 

alkanethiol SAMs with the patterning utility of μ-CP to afford controlled immobilization 

of one or more ligands to specific, well-defined patterns of prescribed size, shape, and 

spatial location. We demonstrate that this easily reproducible μ-CP protocol with mixed 

SAMs of alkanethiolates generates micropatterns with controlled immobilized ligand 

densities.  

 

Materials and Methods 

Two alkanethiols were used to produce self-assembled monolayers (SAMs): 

tri(ethylene glycol)-terminated alkanethiol (HS-(CH2)11-(OCH2CH2)3-OH; EG3) and 

carboxylic acid-terminated alkanethiol (HS-(CH2)11-(OCH2CH2)6-OCH2COOH; EG6-

COOH), obtained from Prochimia (Sopot, Poland). AlexaFluor350-conjugated goat anti-

mouse (AF350) and AlexaFluor488-conjugated goat anti-mouse (AF488) antibodies were 

obtained from Invitrogen (Carlsbad, CA). Different size (9mm x 9mm squares, 25 mm 

diameter circles, No. 1.5) glass slides were used as the underlying substrates for 

subsequent Ti/Au deposition and SAM assembly. Dulbecco’s phosphate buffered saline 

(DPBS) was purchased from Invitrogen. Peptide tethering reagents, N-hydroysuccinimide 

(NHS) and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) were 

obtained from Sigma-Aldrich (St. Louis, MO). Glycine and 2-mercaptoethanol were also 

Materials 
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acquired from Sigma-Aldrich. Gel Mount used for fluorescent slide placement was 

purchased from Biomeda (Foster City, CA). PDMS stamps were made from Sylgard 184 

and 186 obtained from Dow Corning (Midland, MI).  

Master molds of microarrays of different shapes (rectangles, ovals, circles, 

squares), sizes (including 20 µm diameter circles, 8 um diameter ovals, rectangular 

patterns [64, 100, 1000 µm2 area], and squares [64, 100, 1000 µm2 area]), and island 

spacings (55 μm center-to-center spacing for circles, 10 – 50 μm for other shapes) were 

fabricated on Silicon wafers using standard photolithography methods.  Following 

photoresist spin coating (5 μm thick) and exposure to UV light through an optical mask 

(consisting of “holes” comprising of the negative stamp pattern desired), exposed patterns 

were etched away to leave recessed areas of the pre-determined stamp pattern.  

Poly(dimethylsiloxane) (PDMS) stamps were created using standard methods22,19 . 

Briefly, Silicon molds were rendered hydrophobic to prevent elastomer-Silicon adhesion 

by adding 200-300 μl of (tridecafluoro-1,1,2,2-tatrahydrooctyl-)-1-trichlorosilane onto 

the mold surface. PDMS precursors and curing agents (Sylgard 184 and 186) were mixed 

(5:1 for precursor elastomers; 10:1 for curing agents), poured onto the microfabricated 

molds, and placed under vacuum to eliminate bubbles. Following casting on molds, the 

PDMS was cured overnight at 60ºC. After curing, the PDMS stamp was carefully pried 

off the mold and washed with 70% ethanol. Stamp features were confirmed by 

microscopy and image analysis. The dimensions of the PDMS stamps used in this study 

were 30 mm x 30 mm x 5 mm. 

Stamp and Substrate Preparation 
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Gold-coated substrates were created by cleaning glass slides in a custom-made 

tabletop etcher for 4 min, followed by sequential deposition of titanium (100 Å) and gold 

(200 Å) films at a deposition rate of 2 Å /sec onto clean glass slides (9 x 9 mm or 25 mm 

diameter circles) via an electron beam evaporator (Thermionics Laboratories, Hayward, 

CA) at a pressure of 2 x 10-6 Torr. The gold-coated glass substrates were stored in a 

dessicator under vacuum for a maximum of 3 weeks. 

 

 Before μ-CP, all PDMS stamps and Au-coated substrates were sonicated in 70% 

ethanol and dried under a stream of nitrogen. Self-assembled monolayers (SAMs) of 

mixed alkanethiols on Au-coated substrates were used to present well-defined and 

ordered domains for subsequent ligand tethering. PDMS stamps were “inked” with a 

specific mixed alkanethiol ratio of EG6-COOH:EG3 (1.0 mM total thiol concentration; 

0.001 to 0.1 ratios EG6-COOH:EG3) and allowed to dry for 10 seconds under a stream of 

nitrogen to permit excess solution to run off the stamp. Inked stamps were then brought 

into contact with the Au-coated substrates under various weights (50 – 200 g) and for a 

range of time periods (15 – 300 s). Only the raised patterns on the stamp contacted the 

substrates and, therefore, the mixed alkanethiols only transferred to the substrate at these 

points. After the various stamping times, the PDMS stamp was carefully removed using 

thin tweezers, and the unstamped, bare gold areas on the substrate were “backfilled” with 

a 1.0 mM solution of EG3 alkanethiol for at least 2 h. Model ligands (AF350- or AF488-

conjugated antibodies) were tethered onto the mixed alkanethiol SAM islands using 

standard peptide chemistry [169]. Briefly, patterned substrates were washed in 70% 

µ-CP of Mixed Alkanethiol SAMs 
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ethanol and rinsed multiple times in ultrapure H2O for at least 15 min. Next, the 

substrates were incubated in 2.0 mM EDC and 5.0 mM NHS in 0.1 M 2-(N-morpho)-

ethanesulfonic acid and 0.5 NaCl (pH 6.0) to “activate” the EG6-COOH SAMs for 

subsequent ligand tethering. After 30 min, the activated surfaces were immersed in a 20 

mM solution of 2-mercaptoethanol in dH2O. For single ligand patterns, antibody ligand 

(either AF488 or AF350) solution at particular concentrations was incubated on the 

activated supports for various exposure times (15-60 min). For multi-ligand patterns, 

antibody ligands were sequentially added to activated patterns. This procedure entailed 

adding the first ligand to activated substrates for a specific length of time, followed by 

addition of the second ligand to the activated surfaces for another precise time period. 

Following ligand incubation, unreacted NHS esters were quenched in 20 mM glycine and 

patterned surfaces were incubated overnight in DPBS to minimize non-specific protein 

adsorption [170]. 

 

 Tethered-antibody surface density measurements on μ-CP mixed SAMs were 

obtained using a Biacore X instrument (Biacore, Piscataway, NJ) [108]. µ-CP surfaces 

were prepared as described as above on in-house glass SPR chips coated with Ti (57 Å) 

and Au (338 Å). Surfaces were primed in the SPR with sterile DPBS, and the baseline 

allowed to stabilize for 5-10 min. Surfaces were activated by flowing a 5.0 mM NHS/2.0 

mM EDC solution at 4 μl/min for 10 min. Antibody was subsequently tethered by 

injection of AF488 at varying solution concentrations at a flow rate of 4 μl/min for 15 

min. Finally, surfaces were washed for 3 min with 0.1% sodium dodecyl sulfate detergent 

Surface Plasmon Resonance Surface Density Measurements 
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in DPBS to eliminate untethered ligand, and the baseline allowed to stabilize for 2 min 

thereafter before tethered antibody levels measured. Resonance units (RU) were 

converted to surface density values (10 RU = 1 ng/cm2).  We previously showed that 

tethered densities determined in situ in the SPR were equivalent to those generated via 

conventional bench-top incubation methods [108]. 

 

 Following overnight incubation in PBS, samples were washed in ultrapure water 

and mounted on slides with Gel/Mount mounting media. Fluorescence images were taken 

using a Nikon TE-300 fluorescence microscope and Spot RT digital camera. Different 

objective lenses (4-100 X) were used. All images for all samples and patterning 

conditions at each magnification were acquired at the same camera settings to allow 

direct comparison of fluorescence intensity among all samples. In order to assess relative 

density of tethered antibody on each sample/condition, the total fluorescence intensity 

(minus background intensity) was quantified on multiple 10X images from the same 

sample using ImagePro (Version 6.0, MediaCybernetics).  Fluorescence intensity line 

profiles were also prepared from representative images of various magnifications also 

using ImagePro. Profiles were normalized to background intensity (reference line). 

Image Quantification and Analysis 

 

 Fluorescence images of patterns presented represent characteristic results from 

those particular experimental conditions and ligands. Quantified fluorescence intensity 

and ligand density are reported as mean ± standard error. All experimental conditions 

Statistical Analysis 
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involved at least an N = 5, except mixed antibody tethered patterned surfaces, which 

involved N = 4 samples/condition, and at least three independent runs were conducted. 

 

RESULTS 

In order to develop micropatterned substrates with tethered ligand islands of 

controlled sizes and shapes, we developed a microcontact printing protocol implementing 

a mixed ratio of specific alkanethiols to covalently immobilize ligands to specific 

patterned areas. We and others have shown previously that a homogeneous (unpatterned) 

surface presenting a SAM of a ratio of EG6-COOH and EG3- terminated alkanethiols on 

gold-coated substrates affords controlled tethering of amine-presenting ligands, while 

preventing significant non-specific adsorption of non-tethered ligands (Figure A2.1 A) 

[108,149]. The carboxyl-terminated alkanethiols can be modified through standard 

EDC/NHS tethering chemistry to present an NHS ester intermediate, which is readily 

displaced by freely-presented amine groups, typically on peptides or protein ligands, to 

form a peptide bond [284]. The EG3 alkanethiols provide for biofouling resistance.  

Micropatterning with Mixed Alkanethiol Solutions 

 Our protocol for μ-CP mixed ratios of alkanethiols entailed “inking” the cleaned 

PDMS stamp with a mixed solution of these alkanethiols (Figure A2.1 B-1),   bringing it 

in contact with the substrate (the standard μ-CP technique) (Figure A2.1 B-2), and 

subsequently backfilling with EG3 to preserve non-fouling behavior on the unpatterned 

areas (Figure A2.1 B-3).  Patterns were then “activated” via EDC/NHS chemistry 

(Figure A2.1 B-4) and ligands were tethered  (Figure A2.1 B-5).  
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Figure A2.1. Microcontact printing (μ-CP) islands of self assembled monolayers 
(SAMs) of mixed alkanethiols (EG3 and EG6-COOH) onto gold-coated glass 
substrates. (A) Schematic of mixed alkanethiol SAM (95:5 EG3:EG6-COOH). (B) 
Microcontact printing procedure for mixed SAMs: 1) SAMs “inked” onto PDMS stamp, 
2) SAMs stamped and subsequently transferred to substrate, 3) unstamped area backfilled 
with EG3 to generate non-fouling background, 4) mixed alkanethiol islands “activated” 
through conversion of COOH groups into NHS esters via EDC/NHS chemistry, 5) 
tethering of amine-presenting IgG to ester-converted SAMs, 6) Rinsing of mixed 
alkanethiol SAM surface overnight to eliminate weakly bound, non-specific ligand (IgG) 
adsorption to surface. (C) Schematic of patterned tethered islands of IgG (white circles) 
in a non adhesive background (black). Circular islands used in this study were 20 µm 
diameter, 55 µm spacing apart.  
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After quenching unreacted ”activated” surface groups, patterned substrates were rinsed 

overnight in a buffered solution to eliminate non-specific ligand adsorption (Figure A2.1 

B-6). For this study, the optimal resulting μ-CP surface resembles circular islands of 

tethered fluorescent antibody amid a minimally fluorescent background (Figure A2.1 C). 

 

 A central goal of this study was to systematically optimize this µ-CP protocol 

using an evaluation-based approach. We used two fluorescent antibodies, AF488 (green) 

and AF350 (blue), as model ligands because of the widespread use of antibodies in 

biotechnological applications and the ability to easily visualize patterns and eliminate the 

need for immunostaining of proteins.  Early μ-CP patterns were extremely variable, 

inconsistent, and faint. Therefore, we identified several key experimental design 

variables/parameters that potentially influence the fidelity of these patterns and 

qualitatively assessed their  impact on pattern quality. These variables included: (1) 

stamping weight, (2) total stamping time, (3) ratio of alkanethiols used for inking, and (4) 

ligand (antibody) exposure time post-activation of the stamped substrate, which can have 

a profound effect for adsorbed or covalently bound ligands 36. We qualitatively evaluated 

the relative parameter effect on 4 quality-control outcomes: 

Optimizing the μ-CP Protocol for Mixed Alkanethiols 

1. surface homogeneity (corresponding to the overall conformity and consistency 

of the intensity/shape of all islands over the entire patterned substrate); 

2. pattern homogeneity (corresponding to the conformity and consistency of the 

intensity/shape of each individual island from one edge to the other); 
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3. pattern integrity (fidelity of each pattern shape to the original stamp design over 

the entire substrate); 

4. fluorescence intensity (ratio of fluorescence intensity, corresponding directly to 

antibody surface density, of ligand-tethered patterns to background).  

The qualitative results for all conditions tested are summarized in Figure A2.2. 

One specific stamp dimension was used for this assessment (30 mm x 30 mm x 5 mm). 

The best performing condition of each variable was: 90-second stamping time, 5% mixed 

SAM ratio, and 45-min antibody exposure time. The chosen stamping weight was 150 g, 

since it exhibited better pattern integrity than the 200 g weight. 

 

 

 

 



www.manaraa.com

 184 

 

Figure A2.2. Summary of entire optimization procedure and analysis of each major 
variable/condition investigated, including stamping time, stamping weight, mixed 
SAM ratio, and post-surface activation ligand exposure time. Each variable was 
scored on the relative success of 4 different functional outcomes on a qualitative scale of 
1 (poor) to 4 (worked perfectly) “pluses”. The overall best working condition of each 
variable set is bolded and the corresponding relative scores highlighted in red. (N≥3 was 
performed for each condition).  

  

 

 

 

Relative tethered surface densities were determined by quantifying the 

fluorescence intensity of patterns from their corresponding fluorescent images (a 

quantification process we term FIIQ). This FIIQ method entailed quantifying total 

Controlling Single Antibody Tethering to μ-CP Mixed Alkanethiol Circular Patterns 
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fluorescence intensity on each image of each sample, using an in-house imaging macros, 

and normalizing to background fluorescence. To validate this method and compare to 

absolute measurements of tethered density, we conducted parallel measurements using 

surface plasmon resonance (SPR). We quantified tethered AF488 antibody densities at 

two different coating concentrations on both unpatterned (homogeneous 5% COOH SAM 

surface) and patterned (5% COOH SAM patterns backfilled with EG3) gold-coated SPR 

chips (Figure A2.3 A). SPR quantitative antibody densities are in excellent agreement 

with FIIQ relative density results (Fig 2b,c). For example, the predicted ratio of AF488 

(at 100 μg/mL) surface density on μ-CP compared to unpatterned surfaces (10.3%, based 

on area) correlates well with the ratio from the SPR runs (11.2%) and the FIIQ analysis 

(7.8%) (Figure A2.3 C, 1st panel). In addition, AF488 surface density ratios between 100 

μg/mL and 25 μg/mL coating concentrations for patterned (36.6%) and unpatterned 

(30.2%) surfaces were similar to the relative density values obtained by FIIQ (32.2%) 

(Figure A2.3 C, 2nd panel). Taken together, this data validates the FIIQ method for 

quantifying relative AF488/AF350 surface density and provides evidence for control of 

ligand surface density on μ-CP mixed SAM surfaces.  
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Figure A2.3. Correlation of AF488 tethered surface density between SPR and 
fluorescent intensity image quantification (FIIQ). (A) SPR measurement profiles on μ-
CP or unpatterned slides using a 5% COOH-EG6:EG3 SAM. AF488 coating 
concentrations of either 100 μg/mL or 25 μg/mL were flowed over activated surfaces. 
SPR steps were: (a) AF488 adsorption on unactivated surfaces, (b) 0.1% SDS wash, (c) 
EDC/NHS surface activation, (d) AF488 tethering to activated surfaces, (e) 0.1% SDS 
wash. (B) Table summarizing quantitative AF488 surface density results from SPR 
experiments, FIIQ, and predicted relative density based on ratio of island:background 
surface area.  (C) Graphs highlighting close correlation between SPR and FIIQ 
techniques for quantifying tethered IgG ligand surface density.  
 

 

 

 



www.manaraa.com

 187 

To assess the ability to vary the density of tethered ligand on activated patterns in 

greater detail, FIIQ was used to quantify AF488 (green) or AF350 (blue) surface density 

on μ-CP mixed SAM patterns using a range of antibody coating concentrations (Figure 

A2.4). For antibody coating concentrations above 50 μg/mL for AF488 and 75 μg/mL for 

AF350, patterns were well-formed and consistent throughout the entire substrate (Figure 

A2.4 A). However, for lower coating concentrations of 25 and 37 μg/mL for AF488 and 

AF350 respectively, pattern fidelity began to degrade both across the substrate and within 

each pattern (Figure A2.4). At these low concentrations, tethered antibodies seemed to 

localize either in clumps or along the periphery of each sample (Figure A2.5 D,H). At 

high magnification, overall pattern fidelity, as evidenced by line profiles of intensity 

across representative images, was relatively high using either antibody. At lower 

magnifications, the intensity line profiles demonstrated patterns of homogeneous 

intensity across the substrate, even at lower coating concentrations (Figure A2.5 A,B). 

Moreover, background intensity for all coating concentrations was minimal, indicative of 

minimal unspecific antibody adsorption to EG3 backfilled areas. For both AF488 and 

AF350, tethered antibody surface density increased hyperbolically with antibody coating 

concentration on activated μ-CP mixed alkanethiol surfaces (Figure A2.4 B,C). This 

functional dependence of tethered density on coating concentration is in excellent 

agreement with measurements for tethering onto unpatterned substrates [108]. Taken 

together, this data validates control over tethered single ligand density using this μ-CP 

mixed alkanethiol protocol.  
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Figure A2.4. Control over density of tethered ligand on μ-CP islands.  (A) 
Fluorescence images of AF488 (green) and AF350 (blue) tethered-antibody on μ-CP 
circular islands. AF488-tethered island images were at 200, 100, 50, 25 µg/mL coating 
concentration, while images of AF350 were at 300, 150, 75, 37 µg/mL dilutions. Inset 
graphs are line intensity profiles at the prescribed linear path indicated on each image. 
Scale bar is 25 µm. (B) Demonstration of control over tethered antibody density via 
graph of normalized total fluorescence intensity on each sample at varying coating 
concentrations of AF488. (C) Graph of normalized total intensity on each sample at 
varying coating concentrations of AF350.  
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Figure A2.5. Pattern homogeneity is maintained over a range of tethered ligand 
density on μ-CP mixed SAM surfaces. Images are representative of patterns of specific 
antibody densities, including line intensity profiles at the indicated linear path. Scale bar 
is 8 µm. (A) AF488, 200 µg/mL. (B) AF488, 100 µg/mL. (C) AF488, 50 µg/mL. (D) 
AF488, 25 µg/mL. (E) AF350, 300 µg/mL. (F) AF350, 150 µg/mL. (G) AF350, 75 
µg/mL. (H) AF350, 37 µg/mL. 
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We next determined whether multiple ligands (both AF350 and AF488) could be 

co-tethered to the same μ-CP patterns. We determined through pilot patterns that 

sequential incubation of activated patterns in each antibody solution would afford greater 

control over the relative tethered antibody density than one incubation of a single mixed 

solution of various concentrations of each antibody. Using identical protocol conditions 

(weight, stamp time, alkanethiol ratio) to the single ligand procedure, different 

combinations of exposure times of each antibody via sequential incubation were 

qualitatively evaluated (Figure A2.2). The optimal exposure time ratio was determined to 

be 40 min for the first ligand, followed by a full 60 min for the second ligand. Next, 25 

combinations of different ratios of AF350 and AF488 coating concentrations were 

incubated on activated patterned substrates, and the total blue and green fluorescence 

intensity (corresponding to tethered AF350 and AF488 density, respectively) on each 

sample quantified by FIIQ (Figure A2.6 E). It would be expected that the AF488 green 

antibody densities would remain constant over all AF350 blue antibody concentrations - 

as the tethering process for each antibody is independent.  However, since the  coefficient 

of variation (standard deviation of the mean divided by the mean) for these measurements 

is < 10% (data not shown), the observed fluctuations in AF488 tethered densities over the 

range of blue AF350 coating concentrations are not statistically significant.  

Representative fluorescent images (Figure A2.6 A-D) at various AF350:AF488 coating 

concentration ratios reflect FIIQ antibody density data (Figure A2.6 E) and demonstrate 

our ability to control the density of tethered ligands on multiple ligand-tethered patterns.  

Controlling Multiple Antibody Tethering to μ-CP Mixed Alkanethiol Circular Patterns 
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Figure A2.6. Multiple ligands can be tethered in a controlled manner to μ-CP mixed 
alkanethiol SAM islands. Representative fluorescent images of 4 extreme multi-ligand 
coating concentrations exemplify precise control over each antibody density on the same 
mixed alkanethiol SAM pattern. Scale bar is 25 µm.  (A) AF350 (300 µg/mL), followed 
by AF488 (200 µg/mL). (B) AF350 (75 µg/mL), AF488 (200 µg/mL). (C) AF350 (75 
µg/mL), AF488 (200 µg/mL). (D) AF350 (75 µg/mL), AF488 (25 µg/mL). (E) 
Controlled ratios of tethered AF350:AF488 on the same islands can be engineered by 
varying each antibody coating concentration and exposure time on activated mixed 
alkanethiol SAM patterns. 3-D plot of normalized relative surface density of tethered 
AF488 and AF350 antibodies on 25 different multi-antibody coating concentration 
combinations on μ-CP mixed alkanethiol patterns. (mean ± st. error, N = 4).  
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To further examine the versatility of this system, other PDMS stamp designs were 

used to create antibody-tethered mixed alkanethiol patterns of different sizes and shapes. 

Multiple pattern designs were created on a single substrate in localized areas with 

excellent consistency and homogeneity (Figure A2.7 A). Rectangular (16 μm x 8 µm, 

Figure A2.7 B) and rod-shaped patterns (16 μm x 2 μm, Figure A2.7 C) were stamped, 

activated, and tethered with AF488, and linear intensity profiles revealed good surface 

and pattern homogeneity. While slightly fainter and less homogeneous across the surface, 

rectangular patterns (20 μm x 5 μm, Figure A2.7 D) of tethered AF350 were also created 

using this same optimized µ-CP protocol. Overall, we have demonstrated the utility of 

this µ-CP mixed alkanethiol system to generate well-defined and customizable patterns 

(size, shape, spatial locale) with controlled single or multiple ligand densities. 

μ-CP Using Mixed Alkanethiols is Applicable for Diverse Pattern Designs 
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Figure A2.7. μ-CP mixed alkanethiol SAM patterns of different sizes and shapes can 
be prepared by modifying the stamp design. Representative images (scale bar is 5 µm) 
and corresponding line profiles of: (A) Multi-shaped mixed alkanethiol patterns on one 
surface (AF488, 200 µg/mL). (B) AF488-tethered rectangular islands (100 µg/mL). (C) 
AF488-tethered rod-shaped islands (200 µg/mL). (D) AF350-tethered long rectangular 
islands (150 µg/mL).  
 

 

 

 

Discussion 

Development of effective surface patterning techniques to create micropatterned 

arrays with adjustable and controlled presentation of biological ligands is critical to the 

progress of a number of biotechnological applications, including biosensors,  drug 
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delivery systems, and in vitro analyses of cell-material interactions. Moreover, recent 

studies have suggested that the surface density and stability of bioadhesive ligands play a 

central role in cell adhesion, migration, and downstream function, along with adhesive 

area and geometry [281,285-289]. Using a microcontact printing technique with mixed 

alkanethiol SAMs, we developed and optimized a hybrid ligand patterning protocol that 

affords controlled tethering of ligands in specific geometric patterns. The development of 

a simple, versatile, and high utility technique to generate micropatterned surfaces 

presenting tethered ligand is important to the engineering of platforms for rigorous 

studies of cell-material interactions and biotechnological/biomedical applications. The 

hybrid mixed alkanethiol μ-CP protocol presented takes advantage of the ligand tethering 

ability of COOH-terminated alkanethiolates, which can be modified to enable the 

immobilization of amine-presenting ligands [169,284,290]. Several recently developed 2-

D patterning methods, such as the use of polymer films with ink-jet printer technology 

[291] and microfluidics networks [292], have focused on covalent, rather than adsorbed, 

ligand attachment on material surface patterns to better control surface density as well as 

afford control over multiple ligand patterning. However, considerable resources 

requirements and complex operation limit the everyday and widespread applicability of 

these methods. In contrast, the simplicity, speed, and minimal resources required of the 

modified μ-CP protocol presented in this study make it more appealing for many 

biotechnological and biomedical applications.  

Many current ligand and cell patterning methods rely either on selective printing 

of ligand-adsorbing polymers into geometically constrained wells/regions or direct 

printing of ligands onto substrates [266,280,283,291,293]. These methods generally 
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afford very precise ligand surface placement and are advantageous to screening 

combinatorial libraries of ligands. However, these techniques also share various key 

drawbacks, including lack of long-term stable ligand deposition (due to passive ligand 

adsorption) and precise manipulation of ligand density.  These shortcomings hinder their 

applicability to rigorous studies of ligand-cell interactions, biosensors, and kinetic 

analyses that require more long-lasting, stable, and ligand-surface parameter controls. 

The hybrid mixed alkanethiol μ-CP system that is developed and optimized in this study 

directly solves this lack of control over ligand pattern density while maintaining the 

aforementioned beneficial features of micro-contact printing. Although not specifically 

examined in this study, a potential added benefit of this system is more robust control 

over ligand orientation. Moreover, the covalent tethering of ligands may afford more 

stable patterned surfaces in physiological media. 

Since parameter optimization of this protocol was conducted with one set stamp 

size (and PDMS composition), it is possible that the optimal stamp time and weight may 

be slightly altered in systems utilizing alternate stamp size/PDMS volumes. Nonetheless, 

in our studies, we have typically noticed very little change in pattern integrity and quality 

with use of stamp sizes ±50% volume of the stamp used in this study (results not shown). 

In addition, stamp size did not seem to affect the quality of 5 μm or 20 μm patterns, 

although a meticulous analysis of these observations was not conducted. Therefore, it 

may be predicted that the stamping weight and time may need to be slightly increased for 

use of significantly larger volume stamps; vice versa for smaller volume stamps. 

Regardless, this study thoroughly delineates the major experimental parameters and 

general optimal values that should be used with this modified protocol.  
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This technique is applicable for controlled covalent patterning of a wide variety of 

ligands, including biomolecules such as proteins and peptides, polymers for drug delivery 

or sensing applications, antibodies for sensing arrays, and kinetic ligand analyses. This 

technique also could be easily applied to screening different densities and combinations 

of ligands on cells and testing potential drug compounds with controlled kinetic analysis. 

We present optimized parameters to generate spatially defined micropatterns with well 

defined surface densities of single and dual tethered ligands.  While these optimized 

parameters were developed for two antibody ligands, it is possible that different 

processing parameters are needed to tether other ligands.  A similar optimization strategy 

as that presented in this report could be easily adopted for other ligands as well as 

applications requiring more than two ligands tethered on single patterns. 

Summary 

 Using microcontact printing techniques with mixed alkanethiol SAMs, we have 

developed and optimized a hybrid ligand patterning technique that affords controlled 

tethering of ligands in specific geometric patterns. We present optimized parameters to 

generate spatially defined micropatterns with well defined ligand densities of single and 

dual tethered ligands. This technique is applicable for controlled covalent patterning of a 

wide variety of ligands as well as screening combinatorial libraries of ligands in varying 

densities for study of cell-material interactions.  
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APPENDIX C 

CONTROLLING CELL ADHESION TO TITANIUM: 

FUNCTIONALIZATION OF POLY(OLIGO(ETHYLENE GLYCOL) 

METHACRYLATE) BRUSHES WITH CELL ADHESIVE PEPTIDES 

 

Introduction 

Titanium and its alloys represent a major class of materials employed in 

orthopaedic and dental clinical applications. Although titanium-based implants can 

function effectively for a decade, the long-term clinical success of these devices is limited 

by implant loosening and wear, especially in younger patients [3,184]. Considerable 

efforts have focused on implant surface technologies, such as designing rough, porous 

coatings for bone ingrowth, and bone-bonding ceramic coatings to promote integration 

into the surrounding bone and thereby provide mechanical interlock [3,4,294]. However, 

slow rates of osseointegration, particularly in clinically challenging cases, currently 

restrict these approaches.  

Biomimetic coatings, focusing on the presentation of biologically active 

molecules within a protein adsorption-resistant background, have recently emerged as a 

promising strategy to enhance osseointegration [28]. Self-assembled monolayers (SAMs) 

have been explored as a method to control biologically-related surface properties such as  

 

 

*Modified from 
J.E. Raynor, T.A. Petrie, A.J. García, D.M. Collard. Controlling Cell Adhesion to Titanium: 
Functionalization of Poly[oligo(ethylene glycol)methacrylate] Brushes with Cell-Adhesive Peptides. 
Advanced Materials  2007; 19:1724-1728. . 
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cell adhesion [278,286, 295-297]. For example, we have previously demonstrated control 

over protein adsorption and cell adhesion and function by modification of oligo(ethylene 

glycol)-substituted alkanethiol monolayers on gold with specific peptide sequences from 

adhesion proteins [108,169,170,298]. However, SAMs on gold and silver substrates 

suffer from long-term instability and loss of bioresistance, and there are severe 

limitations to the application of robust noble metal coatings on biomedical materials 

[278,286,295,296]. To overcome these shortcomings, several groups have concentrated 

on the engineering of polymeric films on titanium- and silicon-based surfaces to promote 

robust bioresistance [299-302]. For instance, adsorption of end-functionalized 

poly(ethylene glycol) (PEG) onto titanium metal (i.e., a “grafting to” approach to prepare 

polymer brushes) affords resistance to protein adsorption [297]. More recently, a 

“grafting-from” approach was developed based on surface-initiated atom transfer radical 

polymerization (SI-ATRP) of oligo(ethylene glycol) methacrylate (OEGMA) on gold 

modified with a thiol monolayer of a bromo ester initiator. An extensive study of the 

properties of these brushes was made as a function of polymerization time and the surface 

density of initiator. This afforded the ability to control the thickness of the 

poly(OEGMA) film and demonstrated the resistance of these surfaces to cell adhesion 

[296,301,303].  

To build on these findings and to explore the development of stable surface 

modifications of titanium, we set out to establish routes to prepare protein adsorption-

resistant polymer brushes that can be modified with peptide sequences that direct cell 

adhesion. We describe an approach to modify the surface of titanium with dense polymer 

brushes of poly(OEGMA) that resist protein adsorption and cell attachment. Furthermore, 
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conversion of the hydroxyl end groups of the oligo(ethylene glycol) (OEG) side chains to 

4-nitrophenyl carbonate groups allows for tethering of bioactive peptide sequences and 

protein ligands such as adhesion domains from fibronectin and collagen. This procedure 

provides bioconjugate polymer brushes, Figure A3.1, which can be used to generate 

biomimetic coatings on titanium surfaces to promote bioactivity in biomedical and 

biotechnological applications. 

 

Materials/ Results/ Discussion 

To build on these findings and to explore the development of stable surface 

modifications of titanium, we set out to establish routes to prepare protein-adsorption-

resistant polymer brushes that can be modified with peptide sequences that direct cell 

adhesion. We describe an approach to modify the surface of titanium with dense polymer 

brushes of poly(OEGMA) that resist protein adsorption and cell attachment. Furthermore, 

conversion of the hydroxyl end groups of the oligo(ethylene glycol) (OEG) side chains to 

4-nitrophenyl carbonate groups allows for tethering of bioactive peptide sequences and 

protein ligands such as adhesion domains from fibronectin and collagen. This procedure 

provides bioconjugate polymer brushes, Figure A3.1, which can be used to generate 

biomimetic coatings on titanium surfaces to promote bioactivity in biomedical and 

biotechnological applications. Reaction of 2-bromo-2-methylpropionyl bromide with x-

undecenyl alcohol to afford 10-undecen-1-yl 2-bromo-2-methylpropionate, followed by 

hydrosilylation with chlorodimethylsilane gave the initiator-substituted adsorbate, 11-(2-

bromo-2-methyl)propionyloxy)undecenyldimethylchlorosilane, (Figure A3.2) [304]. 

Titanium metal (2000 Å) was deposited onto clean glass coverslips by using electron-
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beam evaporation. The titanium-coated coverslips were cleaned by treatment with 

piranha solution (50% H2O2, 50% concentrated H2SO4; 2 min, room temperature) 

followed by rinsing with copious amounts of distilled water then rinsing with acetone. 

The slides were dried at 125 °C for 2 h and immersed in a 1:1 solution of initiator-

substituted adsorbate and dodecyldimethylchlorosilane (1.2 mmol of each in anhydrous 

hexane) to form a SAM on the titanium oxide surface, Figure A3.1 [305,306].  

 

 

 

Figure A3.1. Poly(OEGMA) brush synthesis schematic. Formation of a peptide-
modified poly(OEGMA) brush on titanium.  
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Formation of a monolayer of adsorbate was shown by the appearance of peaks at 

809 (Si–O), 1738 (C_O), 1263 (O_C–O), and 1167 (O_C–O–C) cm–1 in the grazing 

angle (85°) specular reflection Fourier transform infrared reflectance (FTIR) spectrum, 

Figure 2A. The presence of bromine in the SAM was demonstrated by the appearance of 

a new peak in the X-ray photoelectron spectrum (XPS) at 103 eV (Br, 3d) (Supporting 

Information, Fig. S2). Polymer brushes of OEG-substituted polymethacrylate were 

prepared by immersing the SAM-modified slides into a solution of OEGMA (28.3 

mmol), CuBr (1.6 mmol), 2,22-dipyridyl (2.8 mmol) in a 1:4 mixture of methanol 

(MeOH) and H2O (37.5 mL) (Figure A3.1) [296,304]. Success of the polymerization 

was demonstrated by the appearance of a new peak in the FTIR spectrum at 1730 cm–1 

corresponding to the carbonyl stretching vibration of the polymethacrylate backbone 

(Figure A3.3 B) and by the disappearance of the bromine peak in the XPS spectrum 

(Figure A3.4). The thickness of poly(OEGMA) brushes was monitored as a function of 

time using ellipsometry. The thickness of poly(OEGMA) increased linearly with the 

polymerization time for up to 4 h. Subsequent studies were conducted on slides subjected 

to SI-ATRP for 4 h, which afforded uniform films of poly(OEGMA) brushes with a 

thickness of approximately 135 Å (Figure A3.5). 
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Figure A3.2. Synthesis schematic of initiator. Synthesis of chlorodimethyl(11-(2-
bromo-2-methylpropionyloxy)undecyl)silane. 
 

 

 

Figure A3.3. Carbonyl region of FTIR spectrum throughout formation of peptide-
modified polymer brushes on titanium. A) 1:1 SAM of functionalized initiator 1, and 
chlorododecyldimethylsilane; B) surfaces modified with poly(OEGMA) brushes; C) 
poly(OEGMA) brushes treated with NPC; and D) surfaces modified with GFOGER 
peptide. 
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Figure A3.4. XPS profiles of various stages of brush formation. XPS of SAM of -
bromo ester functionalized initiator on titanium (top) and poly(OEGMA) functionalized 
surface (bottom). 
 
 
 
 

                               
 
Figure A3.5. Control over brush thickness. Ellipsometric thickness of poly(OEGMA) 
brushes on titanium. Error bars indicate standard deviation from 3 measurements. 
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To evaluate the nonfouling properties and stability of the poly(OEGMA) brushes 

on titanium, surfaces were incubated for different time periods in Dulbecco’s minimum 

essential medium (DMEM) culture medium supplemented with 10% fetal bovine serum 

and 1% penicillin–streptomycin. The serum contains adhesive proteins, such as 

vitronectin and fibronectin, which adsorb onto most synthetic materials and mediate cell 

adhesion [226]. Surface plasmon resonance (SPR) measurements of poly(OEGMA) 

brushes on titanium exposed to serum-containing media showed background levels (<0.2 

ng/mm2) of protein adsorption, verifying the protein-adsorption- resistant nature of these 

films. For long-term cell-adhesion studies, the media was changed every seven days. 

After incubation in serum-containing media, titanium modified with poly(OEGMA) 

brushes was challenged with MC3T3-E1 osteoblast-like cells (RIKEN Cell Bank 

#RCB1126) for one hour. The slides were then rinsed with phosphate-buffered saline 

(PBS) buffer and the adherent cells were visualized using microscopy, Figure A3.6 A. 

Unmodified titanium-coated slides and SAMs of tri(ethylene glycol) (EG3)-terminated 

alkanethiol on Au were treated in the same way to demonstrate the effect of the 

poly(OEGMA) polymer brushes. Surfaces modified with poly(OEGMA) brushes on 

titanium were resistant to cell adhesion, Figure A3.6 A. After 56 days a few isolated cells 

that remained on the unfunctionalized poly(OEGMA)-grafted surfaces displayed a 

dendritic morphology indicative of poor adherence. In contrast to titanium surfaces 

modified with poly(OEGMA) brushes, cells adhered to and spread on unmodified 

titanium at all time periods. Notably, although SAMs of EG3-terminated alkanethiols on 

Au displayed resistance to cell adhesion at early time points, significant numbers of 

adherent cells were evident at 14 days. The resistance of poly(OEGMA) brushes on 
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titanium to cell adhesion over extended periods is in contrast to the loss of bioresistance 

of alkanethiols on gold, which has been well documented [278] The data from the long-

term cell-adhesion studies was quantified in order to compare the resistance of 

poly(OEGMA) brushes to EG3 SAMs, Figure A3.6 B. The number of adherent cells on 

surfaces modified with poly(OEGMA) brushes and EG3 SAMs were normalized to the 

cell numbers on unmodified titanium surface. Poly(OEGMA) brushes and EG3 SAMs 

demonstrated comparable bioresistance for the 1 h and 7 day time points. However, at 14 

days poly(OEGMA) maintained the ability to prevent cell adhesion, whereas EG3 SAMs 

showed an increase to 60% cell adhesion relative to the unmodified titanium standard, 

Figure A3.6 B. 

 

 

               

 



www.manaraa.com

 206 

                  

Figure A3.6. Poly(OEGMA) brushes on Ti resist cell adhesion. A) Micrographs of 
adhered cells on unmodified titanium slides (left column), poly(OEGMA)-modified 
titanium slides (center), and EG3 thiol monolayers on Au surfaces (right) after incubation 
in media for up to 14 days and then incubated with fluorescence-labeled cells for 1 h. B) 
Plot of number of adhered cells as a function of time on poly(OEGMA) brushes and EG3 

SAMs. 
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Having demonstrated the resistance to cell adhesion and stability of 

poly(OEGMA) brushes in serum-containing media, we set out to explore methods to 

tether adhesive peptide sequences in order to impart biofunctionality and thereby attain 

control of cell adhesion. This was achieved by covalent immobilization of a triple helical 

peptide that contains the GFOGER  sequence 

(GGYGGGPC(GPP)5(GFOGER)(GPP)5GPC, where O= hydroxyproline, G= glycine, F 

= phenylalanine, E= glutamic acid, and R= arginine) found in type I collagen, which 

selectively promotes cell adhesion [86]. Functionalization of the hydroxyl end groups of 

the poly(OEGMA) brushes was performed by immersion of the slides into a solution of 

4-nitrophenyl chloroformate (NPC) (1.4 mmol in 60 mL of tetrahydrofuran (THF)) 

(Figure A3.1) [307]. Slides treated with NPC were then immersed in a 30 µg/mL 

solution of GFOGER-containing peptide in PBS for 30 min. This process resulted in the 

displacement 4-nitrophenol and subsequent immobilization of the peptide via the N-

terminus by formation of a urethane linkage. Thus, reaction of the polymer brushes with 

NPC resulted in the appearance of a second carbonyl peak at 1770 cm–1 (Fig. A3.3 C) 

because of the presence of the carbonate linkage. After treatment with the GFOGER-

peptide an additional carbonyl peak was observed at 1668 cm–1 corresponding to the 

amide linkages in the oligopeptide, Figure A3.3 D. Effective tethering of adhesive 

peptides was also demonstrated by an enzyme-linked immunosorbent assay (ELISA). We 

examined tethering of a RGD-containing peptide since this sequence represents a 

common adhesion motif to render surfaces bioadhesive. Slides functionalized with NPC 

were treated with a GRGDSPC peptide sequence with a biotin label on the carboxy 

terminus. The slides were then incubated with a biotin antibody bearing an alkaline 
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phosphatase. Subsequent immersion of the slides into a solution of 4-methylumbelliferyl 

phosphate resulted in an increase in fluorescence relative to the amount of peptide on the 

surface. The peptide-modified slides demonstrated a threefold increase in fluorescence 

compared to slides for which the poly(OEGMA) brushes were unmodified, 

demonstrating both the success of the immobilization step and that the peptide retains a 

biologically active conformation. 

The density of peptide tethered onto modified titanium surfaces was quantified by 

SPR. SPR chips were coated with titanium and modified with poly(OEGMA) brushes. 

Two conditions were analyzed: i) poly(OEGMA) brushes modified with NPC, and ii) 

poly(OEGMA) brushes that had not been treated with NPC (as a control). The modified 

SPR chips were exposed to GFOGER peptide (a 10 mL/min flow of a 30 µg/mL solution 

for 25 min). Poly(OEGMA) brushes activated with NPC displayed a significant increase 

in mass when exposed to GFOGER peptide, indicating covalent tethering of the peptide 

onto NPC-modified brushes (Figure A3.7). Using a conversion factor (1000 RU= 1 

ng/mm2, which is generally accepted for layers of adsorbed protein independent of their 

molecular weight, and has been validated for titanium surfaces using radiolabeled 

proteins), we estimate that a surface density of 27.8 pmol/cm2 (i.e., 625 Å of surface area 

per molecule of peptide) was obtained. In contrast, poly(OEGMA) brushes that had not 

been activated with NPC displayed essentially no increase in mass upon exposure to 

GFOGER peptide, reflecting the protein-adsorption-resistant nature of the unmodified 

brushes. 
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Figure A3.7. SPR profile of GFOGER-exposed poly(OEGMA) brushes. NPC-treated 
poly(OEGMA) brushes on Ti (solid line) and untreated brushes (dashed line) upon 
exposure to a solution of GFOGER-containing peptide. 
 
 
 
 
 
 
 
 
 
 

 

 

 

As a final characterization of the peptide-functionalized surfaces, cells were 

seeded onto the engineered brushes. Cells adhered to and spread onto poly(OEGMA) 

brushes that had been activated with NPC and subsequently functionalized with the 

GFOGER peptide, Figure A3.8 A, demonstrating that the tethered peptide is in an active 

form that supports robust cell adhesion. Cells did not attach to poly(OEGMA) brushes 

that had not been activated with NPC, Figure A3.8 B, which is consistent with the SPR 

measurements and previous observations (i.e., Figure A3.7).  
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Figure A3.8. GFOGER immobilized on poly(OEGMA) brushes promotes cell 
adhesion. Micrographs of adhered cells on (left column), poly(OEGMA) brushes treated 
with NPC followed by GFOGER-containing peptide (left) and unmodified 
poly(OEGMA) brushes. Both slides were incubated in a cell solution for 1 hour. 

 

 

 

 

Although a thorough evaluation of cytotoxicity is beyond the scope of this initial 

study, cells adhering to GFOGER-functionalized brushes exhibited a well spread 

morphology and we observed an increase in cell numbers with culture time, suggesting 

that these surfaces are cytocompatible. Ongoing in vitro as well as in vivo studies will 

examine this issue in more depth. 

 

Summary 

In conclusion, we present an approach to modify poly(OEGMA) brushes on 

titanium with peptide sequences from adhesion proteins to provide control over the 

adhesion of cells to the surfaces. The poly(OEGMA) brushes are stable, protein 

adsorption- and cell-adhesion-resistant surfaces. Functionalization with bioadhesive 

peptides selectively promotes cell adhesion. This approach provides a robust 
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methodology to generate coatings that present controlled densities of bioactive ligands 

within a nonfouling background on metal substrates. This represents a biomolecular 

strategy to impart biofunctionality to biomedical-grade titanium and thereby enhance the 

biological performance and osseointegration of titanium-based orthopedic and dental 

devices. 
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